[1] CHEN Y, LI L, JI WY, et al.Research Progress in Dependence Potential Evaluation of Antidepressants of Biogenic Amines[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2022, 19(1): 113-116. [2] ZHANG JJ, ZHI YJ, XIE YM, et al.The Real World Ciwujia Injection for the Treatment of Emotional Disorders Analyzed Based on Data Mining Algorithm[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2022, 19(2): 121-125. [3] WANG Y, ZHOU J, YE J, et al.Multi-Omics Reveal Microbial Determinants Impacting the Treatment Outcome of Antidepressants in Major Depressive Disorder[J]. Microbiome, 2023, 11(1): 195. [4] SHEN D, ZHAO H, GAO S, et al.Clinical Serum Metabolomics Study on Fluoxetine Hydrochloride for Depression[J]. Neurosci Lett, 2021, 746: 135585. [5] UCHIDA T, SUGIURA Y, SUGIYAMA E, et al.Metabolites for Monitoring Symptoms and Predicting Remission in Patients with Depression who Received Electroconvulsive Therapy: a Pilot Study[J]. Sci Rep, 2023, 13(1): 13218. [6] CHEN Y, XU H, ZHU M, et al.Stress Inhibits Tryptophan Hydr-oxylase Expression in a Rat Model of Depression[J]. Oncotarget, 2017, 8(38): 63247-63257. [7] HO CSH, TAN TWK, KHOE HCH, et al.Using an Interpretable Amino Acid-Based Machine Learning Method to Enhance the Diagnosis of Major Depressive Disorder[J]. J Clin Med, 2024, 13(5): 1222. [8] MARX W, MCGUINNESS AJ, ROCKS T, et al.The Kynurenine Pathway in Major Depressive Disorder, Bipolar Disorder, and Schizo-phrenia: a Meta-Analysis of 101 Studies[J]. Mol Psychiatry, 2021, 26(8): 4158-4178. [9] SAKURAI M, YAMAMOTO Y, KANAYAMA N, et al.Serum Metabolic Profiles of the Tryptophan-Kynurenine Pathway in the High Risk Subjects of Major Depressive Disorder[J]. Sci Rep, 2020, 10(1): 1961. [10] CHEN H, XIE H, HUANG SQ, et al.Development of Mass Spectrometry-Based Relatively Quantitative Targeted Method for Amino Acids and Neurotransmitters: Applications in the Diagnosis of Major Depression[J]. J Pharm Biomed Anal, 2021, 194: 113773. [11] LIU Y, ZHAO W, LU Y, et al.Systematic Metabolic Characterization of Mental Disorders Reveals Age-Related Metabolic Disturbances as Potential Risk Factors for Depression in Older Adults[J]. Med Comm, 2022, 3(4): e165. [12] RAMIREZ-ORTEGA D, RAMIRO-SALAZAR A, GONZALEZ-ESQUIVEL D, et al.3-Hydroxykynurenine and 3-Hydroxyanthranilic Acid Enhance the Toxicity Induced by Copper in Rat Astrocyte Culture[J]. Oxid Med Cell Longev, 2017, 2017: 2371895. [13] HEYES MP.The Kynurenine Pathway and Neurologic Disease. Therapeutic Strategies[J]. Adv Exp Med Biol, 1996, 398: 125-129. [14] FUKUDA K.Etiological Classification of Depression Based on the Enzymes of Tryptophan Metabolism[J]. BMC Psychiatry, 2014, 14: 372. [15] WHIPP AM, HEINONEN-GUZEJEV M, PIETILÄINEN KH, et al. Branched-Chain Amino Acids Linked to Depression in Young Adults[J]. Front Neurosci, 2022, 16: 935858. [16] BARANYI A, AMOUZADEH-GHADIKOLAI O, VON LEWINSKI D, et al.Branched-Chain Amino Acids as New Biomarkers of Major Depression-a Novel Neurobiology of Mood Disorder[J]. PloS One, 2016, 11(8): e0160542. [17] CHANDRAN A, IYO AH, JERNIGAN CS, et al.Reduced Phosphorylation of the mTOR Signaling Pathway Components in the Amygdala of Rats Exposed to Chronic Stress[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 40: 240-245. [18] YANG C, ZHOU ZQ, GAO ZQ, et al.Acute Increases in Plasma Mammalian Target of Rapamycin, Glycogen Synthase Kinase-3β, and Eukaryotic Elongation Factor 2 Phosphorylation after Ketamine Treatment in Three Depressed Patients[J]. Biol Psychiatry, 2013, 73(12): e35-e36. [19] YU JJ, ZHANG Y, WANG Y, et al.Inhibition of Calcineurin in the Prefrontal Cortex Induced Depressive-Like Behavior through mTOR Signaling Pathway[J]. Psychopharmacology (Berl), 2013, 225(2): 361-372. [20] WANG D, GAO Y, LI Y, et al.Plasma Metabolomics and Network Pharmacology Identified Glutamate, Glutamine, and Arginine as Biomarkers of Depression under Shuganjieyu Capsule Treatment[J]. J Pharm Biomed Anal, 2023, 232: 115419. [21] CHEN P, LOU S, HUANG ZH, et al. Prefrontal Cortex Corticotropin-Releasing Factor Neurons Control Behavioral Style Selection under Challenging Situations[J]. Neuron, 2020, 106(2): 301-315. e7. [22] BADAMASI IM, MAULIDIANI M, LYE MS, et al.A Preliminary Nuclear Magnetic Resonance Metabolomics Study Identifies Metabolites that Could Serve as Diagnostic Markers of Major Depressive Disorder[J]. Curr Neuropharmacol, 2022, 20(5): 965-982. [23] PAN LA, NAVIAUX JC, WANG L, et al.Metabolic Features of Treatment-Refractory Major Depressive Disorder with Suicidal Ideation[J]. Transl Psychiatry, 2023, 13(1): 393. [24] CHEN H, WANG J, CHEN S, et al.Abnormal Energy Metabolism, Oxidative Stress, and Polyunsaturated Fatty Acid Metabolism in Depressed Adolescents Associated with Childhood Maltreatment: a Targeted Metabolite Analysis[J]. Psychiatry Res, 2024, 335: 115795. [25] ZU X, XIN J, XIE H, et al.Characteristics of Gut Microbiota and Metabolic Phenotype in Patients with Major Depressive Disorder Based on Multi-Omics Analysis[J]. J Affect Disord, 2024, 344: 563-576. [26] WANG F, GUO L, ZHANG T, et al.Alterations in Plasma Lipidomic Profiles in Adult Patients with Schizophrenia and Major Depressive Disorder[J]. Medicina (Mex), 2022, 58(11): 1509. [27] LEE S, MUN S, LEE YR, et al.Discovery and Validation of Acetyl-L-Carnitine in Serum for Diagnosis of Major Depressive Disorder and Remission Status through Metabolomic Approach[J]. Front Psychiatry, 2022, 13: 1002828. [28] MALAGUARNERA M.Carnitine Derivatives: Clinical Usefulness[J]. Curr Opin Gastroenterol, 2012, 28(2): 166-176. [29] NIE LJ, LIANG J, SHAN F, et al.L-Carnitine and Acetyl-L-Carnitine: Potential Novel Biomarkers for Major Depressive Disorder[J]. Front Psychiatry, 2021, 12: 671151. [30] MAHMOUDIANDEHKORDI S, AHMED AT, BHATTACHARYYA S, et al.Alterations in Acylcarnitines, Amines, and Lipids Inform about the Mechanism of Action of Citalopram/Escitalopram in Major Depression[J]. Transl Psychiatry, 2021, 11(1): 153. [31] SUN XL, MA LN, CHEN ZZ, et al.Search for Serum Biomarkers in Patients with Bipolar Disorder and Major Depressive Disorder Using Metabolome Analysis[J]. Front Psychiatry, 2023, 14: 1251955. [32] AMIN N, LIU J, BONNECHERE B, et al.Interplay of Metabolome and Gut Microbiome in Individuals with Major Depressive Disorder vs Control Individuals[J]. JAMA Psychiatry, 2023, 80(6): 597-609. [33] ZHAO S, CHI A, YAN J, et al.Feature of Heart Rate Variability and Metabolic Mechanism in Female College Students with Depression[J]. BioMed Res Int, 2020, 2020: 5246350. [34] MAES M, MIHAYLOVA I, KUBERA M, et al.Lower Plasma Coenzyme Q10 in Depression: a Marker for Treatment Resistance and Chronic Fatigue in Depression and a Risk Factor to Cardiovascular Disorder in that Illness[J]. Neuro Endocrinol Lett, 2009, 30(4): 462-469. [35] GIMÉNEZ-PALOMO A, DODD S, ANMELLA G, et al. The Role of Mitochondria in Mood Disorders: from Physiology to Pathophysiology and to Treatment[J]. Front Psychiatry, 2021, 12: 546801. [36] GLADE MJ, SMITH K.Phosphatidylserine and the Human Brain[J]. Nutrition, 2015, 31(6):781-786. [37] MAHLEY RW.Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism[J]. Arterioscler Thromb Vasc Biol, 2016, 36(7): 1305-1315. [38] MIAO G, DEEN J, STRUZESKI JB, et al.Plasma Lipidomic Profile of Depressive Symptoms: a Longitudinal Study in a Large Sample of Community-Dwelling American Indians in the Strong Heart Study[J]. Mol Psychiatry, 2023, 28(6): 2480-2489. [39] KORNHUBER J, MEDLIN A, BLEICH S, et al.High Activity of Acid Sphingomyelinase in Major Depression[J]. J Neural Transm Vienna Austria, 2005, 112(11): 1583-1590. [40] XIE Z, HUANG J, SUN G, et al.Integrated Multi-Omics Analysis Reveals Gut Microbiota Dysbiosis and Systemic Disturbance in Major Depressive Disorder[J]. Psychiatry Res, 2024, 334: 115804. [41] KIM OY, SONG J.Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia[J]. Life Sci, 2024, 337: 122356. [42] LIU B, ZHANG Y, YANG Z, et al.ω-3 DPA Protected Neurons from Neuroinflammation by Balancing Microglia M1/M2 Polarizations through Inhibiting NF-κB/MAPK p38 Signaling and Activating Neuron-BDNF-PI3K/AKT Pathways[J]. Mar Drugs, 2021, 19(11): 587. [43] BAZINET RP, LAYÉ S.Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease[J]. Nat Rev Neurosci, 2014, 15(12): 771-785. [44] DAVYSON E, SHEN X, GADD DA, et al.Metabolomic Investigation of Major Depressive Disorder Identifies a Potentially Causal Association with Polyunsaturated Fatty Acids[J]. Biol Psychiatry, 2023, 94(8): 630-639. [45] GU X, ZHANG G, WANG Q, et al.Integrated Network Pharmacology and Hepatic Metabolomics to Reveal the Mechanism of Acanthopanax Senticosus against Major Depressive Disorder[J]. Front Cell Dev Biol, 2022, 10: 900637. [46] DU H, WANG K, SU L, et al.Metabonomic Identification of the Effects of the Zhimu-Baihe Saponins on a Chronic Unpredictable Mild Stress-Induced Rat Model of Depression[J]. J Pharm Biomed Anal, 2016, 128: 469-479. [47] GONG MJ, HAN B, WANG SM, et al.Icariin Reverses Corticosterone-Induced Depression-Like Behavior, Decrease in Hippocampal Brain-Derived Neurotrophic Factor (BDNF) and Metabolic Network Disturbances Revealed by NMR-Based Metabonomics in Rats[J]. J Pharm Biomed Anal, 2016, 123: 63-73. [48] LIANG Z, BAI S, SHEN P, et al.GC-MS-Based Metabolomic Study on the Antidepressant-Like Effects of Diterpene Ginkgolides in Mouse Hippocampus[J]. Behav Brain Res, 2016, 314: 116-124. [49] CHOI JH, LEE MJ, JANG M, et al.Panax Ginseng Exerts Antidepressant-Like Effects by Suppressing Neuroinflammatory Response and Upregulating Nuclear Factor Erythroid 2 Related Factor 2 Signaling in the Amygdala[J]. J Ginseng Res, 2018, 42(1): 107-115. [50] WANG X, ZENG C, LIN J, et al.Metabonomics Approach to Assessing the Modulatory Effects of St John's Wort, Ginsenosides, and Clomipramine in Experimental Depression[J]. J Proteome Res, 2012, 11(12): 6223-6230. [51] SU ZH, LI SQ, ZOU GA, et al.Urinary Metabonomics Study of Anti-Depressive Effect of Chaihu-Shu-Gan-San on an Experimental Model of Depression Induced by Chronic Variable Stress in Rats[J]. J Pharm Biomed Anal, 2011, 55(3): 533-539. [52] JIA HM, YU M, MA LY, et al.Chaihu-Shu-Gan-San Regulates Phospholipids and Bile Acid Metabolism Against Hepatic Injury Induced by Chronic Unpredictable Stress in Rat[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1064: 14-21. [53] GAO X, ZHENG X, LI Z, et al.Metabonomic Study on Chronic Unpredictable Mild Stress and Intervention Effects of Xiaoyaosan in Rats Using Gas Chromatography Coupled with Mass Spectrometry[J]. J Ethnopharmacol, 2011, 137(1): 690-699. [54] ZHAO W, JI C, ZHENG J, et al.Effects of Xiaoyao San on Exercise Capacity and Liver Mitochondrial Metabolomics in Rat Depression Model[J]. Chin Herb Med, 2024, 16(1): 132-142. [55] CHENG D, CHANG H, MA S, et al.Tiansi Liquid Modulates Gut Microbiota Composition and Tryptophan-Kynurenine Metabolism in Rats with Hydrocortisone-Induced Depression[J]. Mol Basel Switz, 2018, 23(11): 2832. |