[1] DAI LJ, LI YW, MA D, et al.Next-generation antibody-drug conjugates revolutionize the precise classification and treatment of HER2-expressing breast cancer[J]. Cancer Biology & Medicine, 2023, 20(10): 689. [2] LI M, ZHAO X, YU C, et al.Antibody-drug conjugate overview: a state-of-the-art manufacturing process and control strategy[J]. Pharmaceutical Research, 2024, 41(3): 419-440. [3] VENEZIANI AC, SNEHA S, OZA AM.Antibody-drug conjugates: advancing from magic bullet to biological missile[J]. Clinical Cancer Research, 2024, 30(8): 1434-1437. [4] BAAH S, LAWS M, RAHMAN KM.Antibody-drug conjugates-a tutorial review[J]. Molecules, 2021, 26(10): 2943. [5] FU Z, LI S, HAN S, et al.Antibody drug conjugate: the“biological missile”for targeted cancer therapy[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 93. [6] RICCARDI F, DAL BOM, MACOR P, et al.A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy[J]. Frontiers in Pharmacology, 2023, 14: 1274088. [7] NGUYEN TD, BORDEAU BM, BALTHASAR JP.Mechanisms of ADC toxicity and strategies to increase ADC tolerability[J]. Cancers, 2023, 15(3): 713. [8] GOGIA P, ASHRAF H, BHASIN S, et al.Antibody-drug conjugates: a review of approved drugs and their clinical level of evidence[J]. Cancers, 2023, 15(15): 3886. [9] ZHU Y, LIU K, WANG K, et al.Treatment-related adverse events of antibody-drug conjugates in clinical trials: a systematic review and Meta-analysis[J]. Cancer, 2023, 129(2): 283-295. [10] ADVANI A, COIFFIER B, CZUCZMAN MS, et al.Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study[J]. Journal of Clinical Oncology, 2010, 28(12): 2085-2093. [11] UPPAL H, DOUDEMENT E, MAHAPATRA K, et al.Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1)[J]. Clinical Cancer Research, 2015, 21(1): 123-133. [12] KESIREDDY M, KOTHAPALLI SR, GUNDEPALLI SG, et al.A review of the current FDA-approved antibody-drug conjugates: landmark clinical trials and indications[J]. Pharmaceutical Medicine, 2024, 38(1): 39-54. [13] LINDGREN ES, YAN R, CIL O, et al.Incidence and mitigation of corneal pseudomicrocysts induced by antibody-drug conjugates(ADCs)[J]. Current Ophthalmology Reports, 2024, 12(2): 13-22. [14] MITA M, RICART A, MITA A, et al.A phase I study of a CanAg-targeted immunoconjugate, huC242-DM4, in patients with Can Ag-expressing solid tumors[J]. Journal of Clinical Oncology, 2007, 25(18Suppl): 3062. [15] BORGHAEI H, O’MALLEY DM, SEWARD SM, et al. Phase 1 study of IMGN853, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC) in patients (Pts) with epithelial ovarian cancer (EOC) and other FRA-positive solid tumors[Z]. American Society of Clinical Oncology, 2015. [16] THOMPSON JA, MOTZER R, MOLINA AM, et al.Phase I studies of anti-ENPP3 antibody drug conjugates (ADCs) in advanced refractory renal cell carcinomas (RRCC)[Z]. American Society of Clinical Oncology, 2015. [17] TANNIR NM, FORERO-TORRES A, RAMCHANDREN R, et al.Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma[J]. Investigational New Drugs, 2014, 32: 1246-1257. [18] YOUNES A, BARTLETT NL, LEONARD JP, et al.Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas[J]. New England Journal of Medicine, 2010, 363(19): 1812-1821. [19] VAKLAVAS C, FORERO-TORRES A.Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma[J]. Therapeutic Advances in Hematology, 2012, 3(4): 209-225. [20] YOUNES A, GOPAL AK, SMITH SE, et al.Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma[J]. Journal of Clinical Oncology, 2012, 30(18): 2183. [21] TIJINK BM, BUTER J, DE BREE R, et al.A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus[J]. Clinical Cancer Research, 2006, 12(20): 6064-6072. [22] TARANTINO P, RICCIUTI B, PRADHAN SM, et al.Optimizing the safety of antibody-drug conjugates for patients with solid tumours[J]. Nature Reviews Clinical Oncology, 2023, 20(8): 558-576. [23] GUFFROY M, FALAHATPISHEH H, FINKELSTEIN M.Improving the safety profile of ADCs[M]//Innovations for Next-Generation Antibody-Drug Conjugates. USA: Humana Cham, 2018: 45-71. [24] SABER H, LEIGHTON JK.An FDA oncology analysis of antibody-drug conjugates[J]. Regulatory Toxicology and Pharmacology, 2015, 71(3): 444-452. [25] MASTERS JC, NICKENS DJ, XUAN D, et al.Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads[J]. Investigational New Drugs, 2018, 36: 121-135. [26] ROSENBERG J, SRIDHAR SS, ZHANG J, et al.EV-101: a phase I study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma[J]. Journal of Clinical Oncology, 2020, 38(10): 1041. [27] LIU X, DENG J, ZHANG R, et al.The clinical development of antibody-drug conjugates for non-small cell lung cancer therapy[J]. Frontiers in Immunology, 2023, 14: 1335252. [28] SABER H, SIMPSON N, RICKS TK, et al.An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates[J]. Regulatory Toxicology and Pharmacology, 2019, 107: 104429. [29] LÓPEZ DE SÁA, DÍAZ-TEJEIRO C, POYATOS-RACIONEROE, et al. Considerations for the design of antibody drug conjugates (ADCs) for clinical development: lessons learned[J]. Journal of Hematology & Oncology, 2023, 16(1): 118. [30] PONZIANI S, DI VITTORIO G, PITARI G, et al.Antibody-drug conjugates: the new frontier of chemotherapy[J]. International Journal of Molecular Sciences, 2020, 21(15): 5510. [31] POLSON AG, CALEMINE-FENAUX J, CHAN P, et al.Antibody-drug conjugates for the treatment of non-hodgkin’s lymphoma: target and linker-drug selection[J]. Cancer Research, 2009, 69(6): 2358-2364. [32] DRAGO JZ, MODI S, CHANDARLAPATY SJ.Unlocking the potential of antibody-drug conjugates for cancer therapy[J]. Nature Reviews Clinical Oncology, 2021, 18(6): 327-344. [33] CHALLITA-EID PM, SATPAYEV D, YANG P, et al.Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models[J]. Cancer Research, 2016, 76(10): 3003-3013. [34] GOROVITS B, KRINOS-FIOROTTI CJ.Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake[J]. Cancer Immunology, Immunotherapy, 2013, 62: 217-223. [35] STEPAN LP, TRUEBLOOD ES, HALE K, et al.Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: potential implications as a cancer therapeutic target[J]. Journal of Histochemistry & Cytochemistry, 2011, 59(7): 701-710. [36] HONG DS, CONCIN N, VERGOTE I, et al.Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer[J]. Clinical Cancer Research, 2020, 26(6): 1220-1228. [37] DRAKE PM, RABUKA D.Recent developments in ADC technology: preclinical studies signal future clinical trends[J]. BioDrugs, 2017, 31(6): 521-531. [38] DE GOEIJ BE, LAMBERT JM .New developments for antibody-drug conjugate-based therapeutic approaches[J]. Current Opinion in Immunology, 2016, 40: 14-23. [39] DUVALL JR, BUKHALID RA, CETINBAS NM, et al.XMT-2056, a HER2-targeted Immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity in combination with trastuzumab and pertuzumab[J]. Cancer Res, 2022, 82(12Suppl): 3503-3503. [40] Mersana Therapeutics. Mersana Therapeutics Announces Clinical Hold on XMT-2056 Phase 1 Clinical Trial[EB/OL].(2023-03-13)[2024-01-29]. https://ir.mersana.com/news-releases/news-release-details/mersana-therapeutics-announces-clinical-hold-xmt-2056-phase-1. [41] DESLIGNIÈRE E, EHKIRCH A, DUIVELSHOF BL, et al. State-of-the-art native mass spectrometry and ion mobility methods to monitor homogeneous site-specific antibody-drug conjugates synthesis[J]. Pharmaceuticals, 2021, 14(6): 498. [42] AOYAMA M, TADA M, YOKOO H, et al.Fcγ receptor-dependent internalization and off-target cytotoxicity of antibody-drug conjugate aggregates[J]. Pharmaceutical Research, 2022, 39(1): 89-103. [43] SUN X, PONTE JF, YODER NC, et al.Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates[J]. Bioconjugate Chemistry, 2017, 28(5): 1371-1381. [44] JUNUTULA JR, RAAB H, CLARK S, et al.Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index[J]. Nature Biotechnology, 2008, 26(8): 925-932. [45] CHUPRAKOV S, OGUNKOYA AO, BARFIELD RM, et al.Tandem-cleavage linkers improve the in vivo stability and tolerability of antibody-drug conjugates[J]. Bioconjugate Chemistry, 2021, 32(4): 746-754. [46] ANAMI Y, YAMAZAKI CM, XIONG W, et al.Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice[J]. Nature Communications 2018, 9(1): 2512. [47] HA SY, ANAMI Y, YAMAZAKI CM, et al.An enzymatically cleavable tripeptide linker for maximizing the therapeutic index of antibody-drug conjugates[J]. Molecular Cancer Therapeutics, 2022, 21(9): 1449-1461. [48] BURKE PJ, HAMILTON JZ, JEFFREY SC, et al.Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates[J]. Molecular Cancer Therapeutics, 2017, 16(1): 116-123. [49] SIMMONS JK, BURKE PJ, COCHRAN JH, et al.Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation[J]. Toxicology and Applied Pharmacology, 2020, 392: 114932. [50] LEE A.Loncastuximab tesirine: first approval[J]. Drugs, 2021, 81(10): 1229-1233. [51] SYED YY.Sacituzumab govitecan: first approval[J]. Drugs, 2020, 80(10): 1019-1025. [52] WANG Y, XIAO D, LI J, et al.From prodrug to pro-prodrug: hypoxia-sensitive antibody-drug conjugates[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 20. [53] XIAO D, LIU L, XIE F, et al.Azobenzene-based linker strategy for selective activation of antibody-drug conjugates[J]. Angewandte Chemie, 2024, 63(16): e202310318. [54] MILLER ML, FISHKIN NE, LI W, et al.A new class of antibody-drug conjugates with potent DNA alkylating activity[J]. Molecular Cancer Therapeutics, 2016, 15(8): 1870-1878. [55] CASTAIGNE S, PAUTAS C, TERRÉ C, et al.Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study[J]. Lancet, 2012, 379(9825): 1508-1516. [56] SAPRA P, BETTS A, BONI J.Preclinical and clinical pharmacokinetic/pharmacodynamic considerations for antibody-drug conjugates[J]. Expert Review of Clinical Pharmacology, 2013, 6(5): 541-555. |