Chinese Journal of Pharmacovigilance ›› 2024, Vol. 21 ›› Issue (7): 822-828.
DOI: 10.19803/j.1672-8629.20240194
Previous Articles Next Articles
YAO Hailiang1, DENG Meiyan1,2, LI Xinyang1,3#, MENG Fanhao1,*
Received:
2024-03-22
Online:
2024-07-15
Published:
2024-07-31
CLC Number:
YAO Hailiang, DENG Meiyan, LI Xinyang, MENG Fanhao. Research and development of novel p-21 activated kinase 4 inhibitors[J]. Chinese Journal of Pharmacovigilance, 2024, 21(7): 822-828.
[1] BRAY F, LAVERSANNE M, WEIDERPASS E, et al.The ever-increasing importance of cancer as a leading cause of premature death worldwide[J]. Cancer, 2021, 127(16): 3029-3030. [2] ZHANG Y, LU L, SONG F, et al.Research progress on non-protein-targeted drugs for cancer therapy[J]. J Exp Clin Cancer Res, 2023, 42(1): 62. [3] WU Q, QIAN W, SUN X, et al.Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021[J]. J Hematol Oncol, 2022, 15(1): 143. [4] COSTA TDF, STRÖMBLAD S. Why is PAK4 overexpressed in cancer?[J]. Int J Biochem Cell Biol, 2021, 138: 106041. [5] QIU X, XU H, WANG K, et al.P-21 activated kinases in liver disorders[J]. Cancers, 2023, 15(2): 551. [6] LIU H, LIU K, DONG Z.The role of p21-activated kinases in cancer and beyond: Where are we heading?[J]. Front Cell Dev Biol, 2021, 9: 641381. [7] WANG H, SONG P, GAO Y, et al.Drug discovery targeting p21-activated kinase 4(PAK4): a patent review[J]. Expert Opin Ther Pat, 2021, 31(11): 977-987. [8] ZHANG K, WANG Y, FAN T, et al.The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders[J]. Protein Cell, 2022, 13(1): 6-25. [9] WU A, JIANG X. p21-Activated kinases as promising therapeutic targets in hematological malignancies[J]. Leukemia, 2022, 36(2): 315-326. [10] NAЇJA A, MERHI M, INCHAKALODY V, et al. The role of PAK4 in the immune system and its potential implication in cancer immunotherapy[J]. Cell Immunol, 2021, 367: 104408. [11] DASGUPTA A, SIERRA L, TSANG SV, et al.Targeting PAK4 inhibits ras-mediated signaling and multiple oncogenic pathways in high-risk rhabdomyosarcoma[J]. Cancer Res, 2021, 81(1): 199-212. [12] TANG L, GAO Y, LI T.Pan-cancer analysis identifies the immunological and prognostic role of PAK4[J]. Life Sci, 2023, 312: 121263. [13] FU Y, FANG L, YIN Q, et al.Interfering with PAK4 protein expression affects osteosarcoma cell proliferation and migration[J]. Biomed Res Int, 2021, 2021: 9977001. [14] MURRAY BW, GUO C, PIRAINO J, et al.Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth[J]. Proc Natl Acad Sci USA, 2010, 107(20): 9446-9451. [15] YUAN Y, ZHANG H, LI D, et al.PAK4 in cancer development: emerging player and therapeutic opportunities[J]. Cancer Lett, 2022, 545: 215813. [16] LINK JT, RAGHAVAN S, DANISHEFSKY SJ.First total synthesis of staurosporine and ent-staurosporine[J]. Journal of the American Chemical Society, 1995, 117(1): 552-553. [17] GUO C, JOHNSON MC, LI H, et al. Pyrimidine amino pyrazole compounds, potent kinase inhibitors: USA, WO2007023382A2[P].2007-03-01. [18] PITTS TM, KULIKOWSKI GN, TAN AC, et al.Association of the epithelial-to-mesenchymal transition phenotype with responsiveness to the p21-activated kinase inhibitor, PF-3758309, in colon cancer models[J]. Front Pharmacol, 2013, 4: 35. [19] RYU BJ, LEE H, KIM SH, et al.PF-3758309, p21-activated kinase 4 inhibitor, suppresses migration and invasion of A549 human lung cancer cells via regulation of CREB, NF-κB, and β-catenin signalings[J]. Mol Cell Biochem, 2014, 389(1-2): 69-77. [20] GAO Y, WANG H, WANG J.In silico studies on p21-activated kinase 4 inhibitors: comprehensive application of 3D-QSAR analysis, molecular docking, molecular dynamics simulations, and MM-GBSA calculation[J]. J Biomol Struct Dyn, 2020, 38(14): 4119-4133. [21] RUDOLPH J, CRAWFORD JJ, HOEFLICH KP.Inhibitors of p21-activated kinases (PAKs)[J]. J Med Chem, 2015, 58(1): 111-129. [22] VARGAS B, BOSLETT J, YATES N, et al.Mechanism by which PF-3758309, a pan isoform inhibitor of p21-activated kinases, blocks reactivation of hiv-1 latency[J]. Biomolecules, 2023, 13(1): 100. [23] GUO J, ZHU M, WU T, et al.discovery of indolin-2-one derivatives as potent PAK4 inhibitors: structure-activity relationship analysis, biological evaluation and molecular docking study[J]. Bioorg Med Chem, 2017, 25(13): 3500-3511. [24] GUO J, ZHAO F, YIN W, et al.Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors[J]. Eur J Med Chem, 2018, 155: 197-209. [25] MURRAY BW, GUO C, PIRAINO J, et al.Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth[J]. Proc Natl Acad Sci USA, 2010, 107(20): 9446-9451. [26] RYU BJ, KIM S, MIN B, et al.Discovery and the structural basis of a novel p21-activated kinase 4 inhibitor[J]. Cancer Lett, 2014, 349(1): 45-50. [27] QIN Q, WU T, YIN W, et al.Discovery of 2,4-diaminopyrimidine derivatives targeting p21-activated kinase 4: biological evaluation and docking studies[J]. Arch Pharm (Weinheim), 2020, 353(10): e2000097. [28] WANG C, XIA J, LEI Y, et al.Synthesis and biological evaluation of 7H-pyrrolo [2,3-d] pyrimidine derivatives as potential p21-activated kinase 4 (PAK4) inhibitors[J]. Bioorg Med Chem, 2022, 60: 116700. [29] ZHANG J, WANG J, GUO Q, et al.LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells[J]. Cancer Lett, 2012, 317(1): 24-32. [30] WU T, PANG Y, GUO J, et al.Discovery of 2-(4-substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2,4-diamines as PAK4 inhibitors with potent a549 cell proliferation, migration, and invasion inhibition activity[J]. Molecules, 2018, 23(2): 417. [31] HAO C, ZHAO F, SONG H, et al.Structure-based design of 6-chloro-4-aminoquinazoline-2-carboxamide derivatives as potent and selective p21-activated kinase 4(PAK4) inhibitors[J]. J Med Chem, 2018, 61(1): 265-285. [32] LU TQ, LI XD.Mechanism of quinazoline PAK4 small molecule inhibitor on migration and invasion of pancreatic cancer cells[J]. Journal of Modern Oncology(现代肿瘤医学), 2019, 27(17): 2983-2987. [33] GUO J, WANG T, WU T, et al.Synthesis, bioconversion, pharmacokinetic and pharmacodynamic evaluation of N-isopropyl-oxy-carbonyloxymethyl prodrugs of CZh-226, a potent and selective PAK4 inhibitor[J]. Eur J Med Chem, 2020, 186: 111878. [34] HAO C, HUANG W, LI X, et al.Development of 2, 4-diaminoquinazoline derivatives as potent PAK4 inhibitors by the core refinement strategy[J]. Eur J Med Chem, 2017, 131: 1-13. [35] HAN W, YANG Y, YU F, et al.Design, synthesis and anticancer activity evaluation of 4-(3-1H-indazolyl)amino quinazoline derivatives as PAK4 inhibitors[J]. Bioorg Med Chem, 2023, 95: 117501. [36] YU X, HUANG C, LIU J, et al.The significance of PAK4 in signaling and clinicopathology: a review[J]. Open Life Sci, 2022, 17(1): 586-598. [37] STABEN ST, FENG JA, LYLE K, et al.Back pocket flexibility provides group II p21-activated kinase (PAK) selectivity for type I 1/2 kinase inhibitors[J]. J Med Chem, 2014, 57(3): 1033-1045. [38] LI RJ, CHENG MS, WANG J.Research progress on PAK4 inhibitors[J]. Chinese Journal of Synthetic Chemistry(合成化学), 2019, 27(5): 391-399. [39] SONG P, ZHAO F, LI D, et al.Synthesis of selective PAK4 inhibitors for lung metastasis of lung cancer and melanoma cells[J]. Acta Pharm Sin B, 2022, 12(6): 2905-2922. [40] PARK JK, KIM S, HAN YJ, et al.The discovery and the structural basis of an imidazo[4,5-b]pyridine-based p21-activated kinase 4 inhibitor[J]. Bioorg Med Chem Lett, 2016, 26(11): 2580-2583. [41] ZHANG J, ZHANG HY, WANG J, et al.GL-1196 suppresses the proliferation and invasion of gastric cancer cells via targeting PAK4 and inhibiting PAK4-mediated signaling pathways[J]. Int J Mol Sci, 2016, 17(4): 470. [42] ZHANG HY, ZHANG J, HAO CZ, et al.LC-0882 targets PAK4 and inhibits PAK4-related signaling pathways to suppress the proliferation and invasion of gastric cancer cells[J]. Am J Transl Res, 2017, 9(6): 2736-2747. [43] GUO B, LI X, SONG S, et al.(-)-β-hydrastine suppresses the proliferation and invasion of human lung adenocarcinoma cells by inhibiting PAK4 kinase activity[J]. Oncol Rep, 2016, 35(4): 2246-2256. [44] LI Y, LU Q, XIE C, et al.Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents[J]. Front Pharmacol, 2022, 13: 956220. [45] LI R, WANG H, WANG J.PB-10, a thiazolo[4,5-d] pyrimidine derivative, targets p21-activated kinase 4 in human colorectal cancer cells[J]. Bioorg Med Chem Lett, 2020, 30(2): 126807. [46] SONG PL, WANG G, SU Y, et al.Strategy and validation of a structure-based method for the discovery of selective inhibitors of PAK isoforms and the evaluation of their anti-cancer activity[J]. Bioorg Chem, 2019, 91: 103168. [47] WEI Y, WU W, JIANG Y, et al.Nuplazid suppresses esophageal squamous cell carcinoma growth in vitro and in vivo by targeting PAK4[J]. Br J Cancer, 2022, 126(7): 1037-1046. [48] DENG LY, WANG J, WEI SF, et al.Research progress on allosteric kinase inhibitors targeting allosteric sites[J]. Journal of Shenyang Pharmaceutical University(沈阳药科大学学报), 2023, 40(2): 248-257. [49] SHACHAM S, MCCAULEY D, LANDESMAN Y, et al.Substituted benzofuranyl and benzoxazolyl compounds and uses thereof, CA 20142917315[P]. 2016. [50] ABU ABOUD O, CHEN CH, SENAPEDIS W, et al.Dual and specific inhibition of NAMPT and PAK4 by KPT-9274 decreases kidney cancer growth[J]. Mol Cancer Ther, 2016, 15(9): 2119-2129. [51] RANE C, SENAPEDIS W, BALOGLU E, et al.A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast cancer tumor growth[J]. Sci Rep, 2017, 7: 42555. [52] CORDOVER E, WEI J, PATEL C, et al.KPT-9274, an inhibitor of PAK4 and NAMPT, leads to downregulation of mTORC2 in triple negative breast cancer cells[J]. Chem Res Toxicol, 2020, 33(2): 482-491. [53] KHAN HY, NAGASAKA M, ABOUKAMEEL A, et al.Anticancer efficacy of KRASG12C inhibitors is potentiated by PAK4 inhibitor KPT9274 in preclinical models of KRASG12C-mutant pancreatic and lung cancers[J]. Mol Cancer Ther, 2023, 22(12): 1422-1433. [54] SAMANT C, KALE R, BOKARE A, et al.PAK4 inhibition significantly potentiates gemcitabine activity in PDAC cells via inhibition of Wnt/β-catenin, p-ERK/MAPK and p-AKT/PI3K pathways[J]. Biochem Biophys Rep, 2023, 35: 101544. [55] QASIM SL, SIERRA L, SHUCK R, et al.p21-activated kinases as viable therapeutic targets for the treatment of high-risk ewing sarcoma[J]. Oncogene, 2021, 40(6): 1176-1190. [56] YU HC, JEON YG, NA AY, et al.p21-activated kinase 4 counteracts PKA-dependent lipolysis by phosphorylating FABP4 and HSL[J]. Nat Metab, 2024, 6(1): 94-112. [57] SUBEDI A, LIU Q, AYYATHAN DM, et al.Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis[J]. Cell Stem Cell, 2021, 28(10): 1851-1867. [58] MPILLA GB, UDDIN MH, AL-HALLAK MN, et al.PAK4-NAMPT dual inhibition sensitizes pancreatic neuroendocrine tumors to everolimus[J]. Mol Cancer Ther, 2021, 20(10): 1836-1845. [59] KHAN HY, UDDIN MH, BALASUBRAMANIAN SK, et al.PAK4 and NAMPT as novel therapeutic targets in diffuse large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma[J]. Cancers, 2021, 14(1): 160. [60] ZHANG P, BRINTON LT, WILLIAMS K, et al.Targeting DNA damage repair functions of two histone deacetylases, HDAC8 and SIRT6, sensitizes acute myeloid leukemia to NAMPT inhibition[J]. Clin Cancer Res, 2021, 27(8): 2352-2366. [61] SU S, YOU S, WANG Y, et al.PAK4 inhibition improves PD1 blockade immunotherapy in prostate cancer by increasing immune infiltration[J]. Cancer Lett, 2023, 555: 216034. |
[1] | JIANG Haiyan, ZHOU Tianyu, FAN Xiaoyu, LI Wanfang, BAO Jie, JIN Hongtao. Challenges to the current development of fixed-dose antitumor drug combinations [J]. Chinese Journal of Pharmacovigilance, 2024, 21(9): 961-966. |
[2] | WANG Yijin, TANG Jing, YANG Chao, XU Kai, ZHANG Mengdie, GAO Jian, WU Xiaoli, ZHANG Yue, NIU Xiaobing, JIANG Hesong, MAO Fei, ZHOU Shan, JIANG Xi, GUO Zhongying, SUN Su'an, XU Ming, XU Zongyuan, WANG Hengbing, LI Xin, FU Guangbo. Clinical research of submucosal low-dose gemcitabine injection combined with transurethral resection of bladder tumor in the treatment of medium-high risk non-muscle invasive bladder cancer [J]. Chinese Journal of Pharmacovigilance, 2024, 21(9): 1044-1050. |
[3] | LU Jing, YU Shanshan, TONG Fei, LIN Zhuohui, SONG Luyao. One case of severe constipation caused by dapagliflozin [J]. Chinese Journal of Pharmacovigilance, 2024, 21(9): 1071-1074. |
[4] | LIU Lianqi, XIAO Dian, ZHONG Wu, ZHOU Xinbo, LI Song. Toxicity associated with antibody-drug conjugates and corresponding research strategies [J]. Chinese Journal of Pharmacovigilance, 2024, 21(7): 721-729. |
[5] | TANG Zhenju, LONG Xiaohuan, WANG Yijun, HUANG Yuteng, WANG Weiliang. One case of erythema multiforme drug eruption caused by donafenib tosilate tablets [J]. Chinese Journal of Pharmacovigilance, 2024, 21(6): 700-702. |
[6] | HU Xiaozhen, MA Lina, HE Ting, GU Yuanyuan, ZHAO Wei, ZHENG Changhui, YE Zuguang, CAO Junling. Literature research on ancient and modern literature of Dichroae Radix and Shu lacquer [J]. Chinese Journal of Pharmacovigilance, 2024, 21(5): 587-593. |
[7] | ZHANG Jian, ZHANG Lingli, LI Xin. Immune-related adverse events of tirelizumab in 424 cases of cancer patients [J]. Chinese Journal of Pharmacovigilance, 2024, 21(4): 435-439. |
[8] | YANG Bo, WANG Mengjiao, HU Lili, WANG Laicheng, LI Qian, KONG Feifei, LYU Dongmei, SHEN Jiani. Safety assessment and risk factor analysis of PD-1 immunotherapy in a cohort of 385 patients [J]. Chinese Journal of Pharmacovigilance, 2024, 21(4): 447-450. |
[9] | SUN Wu, CHEN Shuiling, ZHOU Wanyu, SHI Hang, LIU Lu, HE Yan, FU Wentao, CHU Liqun. Two cases of uveitis caused by TNF-α inhibitor recombinant human tumor necrosis factor-α receptor II: IgG Fc fusion protein for injection / etanercept for injection [J]. Chinese Journal of Pharmacovigilance, 2024, 21(4): 457-460. |
[10] | LI Shaoqiang, KONG Xudong, LI Pengmei. One case of hyponatremia caused by omeprazole sodium for injection [J]. Chinese Journal of Pharmacovigilance, 2024, 21(4): 461-463. |
[11] | HUANG Huanjun, MAI Jiaheng, ZHANG Yunhui, GUO Chenchen, LIANG Weiting. Adverse drug reaction induced by antineoplastic drugs in a cancer hospital: an analysis of 613 cases [J]. Chinese Journal of Pharmacovigilance, 2024, 21(3): 324-328. |
[12] | FANG Meilin, ZHENG Huimin, WANG Cunze, WANG Ling, RUAN Junshan. One case of generalized myalgia caused by oxaliplatin [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 208-210. |
[13] | JIN Shengju, ZHOU Miao, ZHANG Jianing, GE Gonghui, ZHANG Tingjian, MENG Fanhao. Research progress in novel xanthine oxidase inhibitors and treatment of gout [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 223-228. |
[14] | XIN Lingyi, YANG Yang, ZHU Jing, HE Na, ZHANG Jingmei, WANG Hangtian, CHEN Qinhua, YANG Guangyi. Classification of anti-tumor active ingredients of Paridis Rhizoma and research progress in mechanisms of action [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 235-240. |
[15] | XIE Sihua, GAO Zhichao, ZHANG Wei, XING Jiahui, LIANG Jingwei, MENG Fanhao. Research progress in mechanisms of acquired drug resistance and EGFR-targeted therapy tolerance in non-small cell lung cancer [J]. Chinese Journal of Pharmacovigilance, 2024, 21(10): 1081-1086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||