Chinese Journal of Pharmacovigilance ›› 2025, Vol. 22 ›› Issue (3): 263-270.
DOI: 10.19803/j.1672-8629.20240945
• Orginal Article • Previous Articles Next Articles
BU Zixuan1, XUE Mengwei1, TIAN Jiawei1, KE Kaile1, WANG Ziying1, LI Xiao2, LU Tiangong1,*
Received:
2024-12-06
Online:
2025-03-15
Published:
2025-03-17
CLC Number:
BU Zixuan, XUE Mengwei, TIAN Jiawei, KE Kaile, WANG Ziying, LI Xiao, LU Tiangong. Interventions of Guizhi Fuling Pills in Properties of Ovarian Cancer Stem Cells[J]. Chinese Journal of Pharmacovigilance, 2025, 22(3): 263-270.
[1] LIBERTO J, CHEN S, SHIH I, et al.Current and Emerging Methods for Ovarian Cancer Screening and Diagnostics: a Comprehensive Review[J].Cancers, 2022, 14(12): 2885. [2] HAN B, ZHENG R, ZENG H, et al.Cancer Incidence and Mortality in China, 2022[J].Journal of the National Cancer Center, 2024, 4(1): 47-53. [3] WEBB P, JORDAN S.Global Epidemiology of Epithelial Ovarian Cancer[J].Nature Reviews Clinical Oncology, 2024, 21(5): 389-400. [4] ALI A, AL-ANI O, AL-ANI F.Epidemiology and Risk Factors for Ovarian Cancer[J].Przeglad Menopauzalny, 2023, 22(2): 93-104. [5] SACKS D, BAXTER B, CAMPBELL B, et al.Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke[J].International Journal of Stroke, 2018, 13(6): 612-632. [6] NUNES M, BARTOSCH C, ABREU M, et al.Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options[J].Cells, 2024, 13(9): 786. [7] LOH J, MA S.Hallmarks of Cancer Stemness[J].Cell Stem Cell, 2024, 31(5): 617-639. [8] PÉREZ-GONZÁLEZ A, BÉVANT K, BLANPAIN C. Cancer Cell Plasticity during Tumor Progression, Metastasis and Response to Therapy[J].Nature Cancer, 2023, 4(8): 1063-82. [9] CHIARA B, HILARY AK, MELISSA Z, et al.Tumor Microenviro-nment-Induced FOXM1 Regulates Ovarian Cancer Stemness[J].Cell Death & Disease, 2024, 15(5): 370. [10] HUANG Z, BYRD O, TAN S, et al.Periostin Facilitates Ovarian Cancer Recurrence by Enhancing Cancer Stemness[J].Scientific Reports, 2023, 13(1): 21382. [11] MOTOHARA T, KATABUCHI H.Ovarian Cancer Stemness: Biological and Clinical Implications for Metastasis and Chemotherapy Resistance[J].Cancers(Basel),2019, 11(7): 907. [12] DUAN XN, HU HL, WANG LZ, et al. Aldehyde Dehydrogenase 1 Family: a Potential Molecule Target for Diseases[J/OL].Cell Biology International,(2024-05-21)[2025-01-26].https://pubmed.ncbi.nlm.nih.gov/38800962/. [13] KAROLINA F, BARTŁOMIEJ B. The Role of Cancer Stem Cell Markers in Ovarian Cancer[J].Cancers(Basel),2024, 16(1): 40. [14] RUSCITO I, DARB-ESFAHANI S, KULBE H, et al.The Prognostic Impact of Cancer Stem-Like Cell Biomarker Aldehyde Dehydrogenase-1(ALDH1) in Ovarian Cancer: a Meta-Analysis[J].Gynecologic Oncology, 2018, 150(1): 151-157. [15] GUO Q, YANG CX, GAO F.The State of CD44 Activation in Cancer Progression and Therapeutic Targeting[J].Federation of European Biochemical Societies, 2021, 289(24): 16179. [16] CHUNG SY, HUNG YP, PAN YR, et al.Ruxolitinib Combined with Gemcitabine against Cholangiocarcinoma Growth via the JAK2/STAT1/3/ALDH1A3 Pathway[J].Biomedicines, 2021, 9(8): 885. [17] MEIJUAN L, NA L, ZHAOXUE W, et al.Synthesis of a Celastrol Derivative as a Cancer Stem Cell Inhibitor through Regulation of the STAT3 Pathway for Treatment of Ovarian Cancer[J].RSC Medicinal Chemistry, 2024, 15(10): 3433-3443. [18] JIN Y, WANG C, ZHANG B, et al.Blocking EGR1/TGF-β1 and CD44s/STAT3 Crosstalk Inhibits Peritoneal Metastasis of Gastric Cancer[J].International Journal of Biological Sciences, 2024, 20(4): 1314-1331. [19] JIANG YX, SIU MK, WANG JJ, et al.Ascites-Derived ALDH+CD44+Tumour Cell Subsets Endow Stemness, Metastasis and Metabolic Switch via PDK4-Mediated STAT3/AKT/NF-κB/IL-8 Signalling in Ovarian Cancer[J].British Journal of Cancer Research, 2020, 123(2): 275-287. [20] ZHANG TC, LIU Y, ZHANG MY.Research Progress on the Pharm-acology of Guizhi Fuling Wan[J].Journal of Liaoning University of Tradi-tional Chinese Medicine(辽宁中医药大学学报),2025, 27(2): 190-195. [21] LI SK. Mechanism of Guizhi Fuling Wan in Treating Uterine Fibroids[N].Popular Healthy News(大众健康报),2023-03-13(25). [22] YANG QJ,LU WZ, WANG LX.Clinical Efficacy of Guizhi Fuling Wan Combined with Modified Xiaoyaosan in the Treatment of Polycystic Ovary Syndrome and Its Influence on Sex Hormones and Recurrence Rate[J].The Journal of Medical Theory and Practice(医学理论与实践),2021, 34(24): 4313-4314. [23] JIANG SH, LI L, WU YS, et al.Mechanism of Guizhi Fuling Wan Inhibiting Proliferation of Human Breast Cancer Cells MCF-7[J].Chinese Journal of Experimental Traditional Medical Formulae(中国实验方剂学杂志),2018, 24(15): 132-136. [24] SONG TT, LIU GY, WANG YY, et al.The Sensitization Effect of Guizhi Poria Decoction on Postoperative Chemotherapy in Ovarian Cancer Patients and Its Impact on Inflammatory Factors and Immune Indices[J].Chinese Archives of Traditional Chinese Medicine(中华中医药学刊),2021, 39(5): 251-254. [25] ZHANG HY. Research Progress in Clinical Application of Guizhi Fuling Wan[J].Gansu Medical Journal(甘肃医药),2022, 41(2): 105- 106, 112. [26] TAO FF, SHEN MH, KONG LY, et al.An Analysis of Solar Term Medication Patterns in 778 Cases of Ovarian Cancer Prescriptions Using Data Mining Techniques[J].China Journal of Traditional Chinese Medicine and Pharmacy(中华中医药杂志),2016, 31(3): 1012-1016. [27] XUEZHEN W, PEIWEI S, QIAN H, et al.A Chinese Classical Prescription Guizhi-Fuling Wan in Treatment of Ovarian Cancer: an Overview[J].Biomed Pharmacother, 2022, 153: 113401. [28] LI ZT.The Efficacy of Guizhi Fuling Wan in Combination with Western Medicine for the Treatment of Advanced Ovarian Cancer[J].Clinical Research(临床研究),2020, 28(5): 130-132. [29] MA Q, CHEN F, LIU Y, et al.Integrated Transcriptomic and Proteomic Analysis Reveals Guizhi-Fuling Wan Inhibiting STAT3-EMT in Ovarian Cancer Progression[J].Biomed Pharmacother, 2024, 170: 116016. [30] WAN S, ZHAO E, KRYCZEK I, et al.Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells[J].Gastroenterology, 2014, 147(6): 1393-1404. [31] ZHAO DD, HOU LL, ZHANG JS, et al.Development of Three-Dimensional Cell Culture Technology and Its Applications to Stem Cells and Tumor Cells[J].Chinese Journal of Cell Biology(中国细胞生物学学报),2015, 37(8): 1140-1150. [32] LU T, BANKHEAD A, LJUNGMAN M, et al.Multi-Omics Profiling Reveals Key Signaling Pathways in Ovarian Cancer Controlled by STAT3[J].Theranostics, 2019, 9(19): 5478-5496. [33] JOHNSON DE, O'KEEFE RA, GRANDIS JR. Targeting the IL-6/JAK/STAT3 Signalling Axis in Cancer[J].Nature Reviews Clinical Oncology, 2018, 15(4): 234-248. [34] LOH JJ, MA S.Hallmarks of Cancer Stemness[J].Cell Stem Cell, 2024, 31(5): 617-639. [35] GOU R.Research and Progress in the Tumor Stem Cell Signaling Pathway(PI3K/AKT)[J].Harbin Medical Journal(哈尔滨医药),2021, 41(1): 139-141. [36] SILVA VR, SANTOS LS, DE CASTRO M, et al.A Novel Ruthenium Complex with 5-Fluorouracil Suppresses Colorectal Cancer Stem Cells by Inhibiting Akt/mTOR Signaling[J].Cell Death Discov ery, 2023, 9(1): 460. [37] HUANG BJ. Epstein-Barr Virus LMP1 Activates the PI3K/AKT/FOXO3a Pathway to Upregulate Human miR-21 and Promote Dryness and Drug Resistance in Nasopharyngeal Carcinoma Cells[EB/OL].(2017-02-28)[2025-01-26] .https://kns.cnki.net/kcms2/article/abstract?v=jNHD1hIvxn33KfJQX3s8a8S37OpUiLium_n2BKrND2p2-VZbmqG1AKCpt_2zIkMBh4IdPzaGkLhRvPbHnY-cL6By_r2qxpcmmyHodohyvkZR38jmQqxW3JDaK4nGo_yabzmtZc4LBeaHUNWGTAr5VIGZzlAiDv4PGo9I03LYUwY=&uniplatform=NZKPT. [38] YANG X, LIU Z, XU X, et al.Casticin Induces Apoptosis and Cytoprotective Autophagy while Inhibiting Stemness Involving Akt/mTOR and JAK2/STAT3 Pathways in Glioblastoma[J].Phytotherapy Research, 2024, 38(1): 305-320. [39] LI J, WANG ZH, DANG YM, et al.MTH1 Suppression Enhances the Stemness of MCF7 through Upregulation of STAT3[J].Free Radical Biology & Medicine, 2022, 188: 447-458. [40] CURYLOVA L, RAMOS H, SARAIVA L, et al.Noncanonical Roles of p53 in Cancer Stemness and Their Implications in Sarcomas[J].Cancer letters, 2022, 525: 131-145. [41] KARAMI FATH M, EBRAHIMI M, NOURBAKHSH E, et al.PI3K/Akt/mTOR Signaling Pathway in Cancer Stem Cells[J].Pathology, Research and Practice, 2022, 237: 154010. [42] SUN X, ZHANG Y, XIN S, et al.NOTCH3 Promotes Docetaxel Resistance of Prostate Cancer Cells through Regulating TUBB3 and MAPK Signaling Pathway[J].Cancer Science, 2024, 115(2): 412-426. [43] CUI CP, WONG CC, KAI AK, et al.SENP1 Promotes Hypoxia-Induced Cancer Stemness by HIF-1α deSUMOylation and SENP1/HIF-1α Positive Feedback Loop[J].Gut, 2017, 66(12): 2149-2159. [44] CHIPPALKATTI R, ABANKWA D.Promotion of Cancer Cell Stemness by Ras[J].Biochemical Society Transactions, 2021, 49(1): 467-476. [45] XU X, CHAI S, WANG P, et al.Aldehyde Dehydrogenases and Cancer Stem Cells[J].Cancer Letters, 2015, 369(1): 50-57. [46] WEI Y, LI Y, CHEN Y, et al.ALDH1: a Potential Therapeutic Target for Cancer Stem Cells in Solid Tumors[J].Frontiers in Oncology, 2022, 12: 1026278. [47] WEI CY, ZHU MX, YANG YW, et al.Downregulation of RNF128 Activates Wnt/β-Catenin Signaling to Induce Cellular EMT and Stemness via CD44 and CTTN Ubiquitination in Melanoma[J].Journal of Hematology&Oncology, 2019, 12(1): 21. [48] YU C, YUAN H, XU Y, et al.Hyaluronan Delays Human Amniotic Epithelial Stem Cell Senescence by Regulating CD44 Isoform Switch to Activate AKT/mTOR Signals[J].Biomed Pharmacother, 2024, 170: 116100. [49] ZHU SL, CHEN YH, YAO JP, et al.Cinnamaldehyde Regulates the CD44s/STAT3 Signaling Pathway to Inhibit Proliferation and Stemness of Pancreatic Cancer Cells[J].Chinese Pharmacological Bulletin(中国药理学通报),2022, 38(5): 676-683. [50] IZADPANAH A, MOHAMMADKHANI N, MASOUDNIA M, et al.Update on Immune-Based Therapy Strategies Targeting Cancer Stem Cells[J].Cancer Medicine, 2023, 12(18): 18960-18980. |
[1] | GAN Yena, HAN Sheng, YUAN Yi, XUE Lijuan, HUANG Haowen, LI Huanxin, ZHANG Xinci, KUI Siyi, MENG Bofei, LI Qifei, ANARGUL Tudi, LIU Zhifeng, QIN Lingling, LI Duoduo. Possible Molecular Mechanisms of Dachengqi Decoction for Improving Subjective Symptoms of Degenerative Lumbar Spinal Stenosis: a Network Pharmacology Study [J]. Chinese Journal of Pharmacovigilance, 2025, 22(2): 162-168. |
[2] | ZHENG Haiyun, ZHANG Wen, WANG Shaonan, ZHAO Haiyu, DU Shouying. Anti-fatigue effects and mechanism of ginseng combined with caffeine in rats [J]. Chinese Journal of Pharmacovigilance, 2024, 21(8): 863-870. |
[3] | ZHANG Kaihua, LIU Dingwei, FU Changhai, SUN Xuelin, MIN Xianjun. Effects of rosastatin combined with Danggui Buxue Tang on expressions of AR and NR3C2 [J]. Chinese Journal of Pharmacovigilance, 2024, 21(8): 871-877. |
[4] | LI Xinlei, GONG Leilei, WANG Xiaoxia, ZHANG Xueyan, ZHAO Han, YAO Weijie, YUAN Sisi, FENG Xin. Molecular mechanism of Yangxue Antai granules for the treatment of recurrent spontaneous abortion based on network pharmacology and molecular docking [J]. Chinese Journal of Pharmacovigilance, 2024, 21(4): 366-370. |
[5] | RU Chen, HOU Xiujuan, QIAN Tangliang, DU Mengmeng, LI Yuan, LIU Xiaoping, ZHU Yuelan. Compatibility and mechanism of a Chinese medicine compound in treating Sjogren's syndrome [J]. Chinese Journal of Pharmacovigilance, 2024, 21(4): 397-403. |
[6] | LI Jiaxin, LIU Huimin, QIAN Wenxiu, MA Ning, SONG Lili, LI Yubo. Nephrotoxic effects and usage of traditional Chinese medicines based on the Traditional Chinese Medicine Systems Toxicology Database [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 173-180. |
[7] | LIU Ying, SONG Xuyu, SUN Rong. Research Progress in Mechanisms of Rhubarb Anthraquinone Based on Hepatic Lipid Regulation and Hepatotoxicity [J]. Chinese Journal of Pharmacovigilance, 2024, 21(12): 1432-1440. |
[8] | YIN Xiaoyang, ZHANG Xiaomeng, LIU Zeyu, LIU Yadi, WANG Yu, LIN Zhijian, ZHANG Bing. Cardiotoxicity of Euodia rutaecarpa(Juss.) Benth. Based on Network Pharmacology and Untargeted Metabolomics [J]. Chinese Journal of Pharmacovigilance, 2024, 21(11): 1216-1223. |
[9] | WANG Rumeng, SI Qin. Effect of targeting c-Met/CD47 CAR-T cells on ovarian cancer cells [J]. Chinese Journal of Pharmacovigilance, 2024, 21(10): 1103-1112. |
[10] | YANG Zhenzhen, CHANG Cheng, GAO Na, ZHANG Xiaolin, SONG Yinsen, LIU Ying, FAN Tianli. Molecular mechanism of luteolin for inhibiting esophageal squamous cell carcinoma based on network pharmacology and in vitro studies [J]. Chinese Journal of Pharmacovigilance, 2023, 20(9): 992-1001. |
[11] | YIN Yuling, HU Chujuan, ZHANG Xiaomeng, WANG Yu, ZHANG Bing, LIN Zhijian. Mining and validation of anti-adriamycin cardiotoxic effect of chicory extract [J]. Chinese Journal of Pharmacovigilance, 2023, 20(8): 858-865. |
[12] | MEI Yu, ZHU Yue, ZHANG Huiting, XIAO Chengrong, GAO Yue, MA Zengchun. Protective mechanism of Chinese medicine compound CB001 against low dose radiation based on network pharmacology and experimental verification [J]. Chinese Journal of Pharmacovigilance, 2023, 20(8): 872-879. |
[13] | LI Yamei, SHUI Rong. Research progress in tofacitinib for juvenile idiopathic arthritis [J]. Chinese Journal of Pharmacovigilance, 2023, 20(8): 956-960. |
[14] | MA Qihong, SHI Yuanyuan, CHEN Fangfang, WU Kang, BU Zixuan, LU Tiangong. Mechanisms of celastrol for ovarian cancer: based on quantitative proteomics [J]. Chinese Journal of Pharmacovigilance, 2023, 20(7): 721-727. |
[15] | SU Yuefen, ZHENG Jingrou, GONG He, XIE Guangtong, ZHANG Jie, SAI Chunmei. Formability and mechanism of breast nodule pain-alleviating gel plaster for the treatment of breast hyperplasia [J]. Chinese Journal of Pharmacovigilance, 2023, 20(7): 783-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||