Chinese Journal of Pharmacovigilance ›› 2018, Vol. 15 ›› Issue (12): 755-760.
Previous Articles Next Articles
WANG Shuo, CHEN Naihong, YUAN Yuhe*
Received:
2019-01-18
Revised:
2019-01-18
Online:
2018-12-20
Published:
2019-01-18
CLC Number:
WANG Shuo, CHEN Naihong, YUAN Yuhe. Advances in Research on Targeted Treatment of Alzheimer's Disease[J]. Chinese Journal of Pharmacovigilance, 2018, 15(12): 755-760.
Add to citation manager EndNote|Ris|BibTeX
[1] Vassar R, Bennett B D, Babu-Khan S, et al.β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J]. science, 1999, 286(5440): 735-741. [2] Haass C, Steiner H.Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases[J]. Trends in cell biology, 2002, 12(12): 556-562. [3] Holmes C, Boche D, Wilkinson D, et al.Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial[J]. The Lancet, 2008, 372(9634): 216-223. [4] Ghosh A K, Bilcer G, Harword C, et al.Structure-based design: potent inhibitors of human brain memapsin 2 (β-secretase)[J]. Journal of medicinal chemistry, 2001, 44(18): 2865-2868. [5] Chiang K, Koo E H .Emerging therapeutics for Alzheimer's disease[J]. Annual Review of Pharmacology & Toxicology, 2014, 54(1):381. [6] Ghosh A K, Brindisi M, Tang J.Developing beta-secretase inhibitors for treatment of Alzheimer's disease[J]. J Neurochem, 2012, 120(Suppl 1):71-83. [7] May P C, Willis B A, Lowe S L, et al.The potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans[J]. Journal of Neuroscience, 2015, 35(3): 1199-1210. [8] Yan R, Vassar R.Targeting the β secretase BACE1 for Alzheimer's disease therapy[J]. The Lancet Neurology, 2014, 13(3): 319-329. [9] P Imbimbo B, AM Giardina G.γ-secretase inhibitors and modulators for the treatment of Alzheimer's disease: disappointments and hopes[J]. Current topics in medicinal chemistry, 2011, 11(12): 1555-1570. [10] Kumar A, Singh A, Ekavali. A review on Alzheimer's disease patho-physiology and its management: an update[J]. Pharmacological reports: PR, 2015, 67(2): 195-203. [11] Martone R L, Zhou H, Atchison K, et al.Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein γ-secretase for the treatment of Alzheimer's disease[J]. Journal of Pharmacology and Experimental Therapeutics, 2009, 331(2): 598-608. [12] Piton M, Hirtz C, Desmetz C, et al.Alzheimer's Disease: Advances in Drug Development[J]. Journal of Alzheimer's Disease, 2018,(Preprint): 1-11. [13] Nalivaeva N N, Beckett C, Belyaev N D, et al.Are amyloid degrading enzymes viable therapeutic targets in Alzheimer's disease?[J]. Journal of neurochemistry, 2012, 120(s1): 167-185. [14] Saito T, Iwata N, Tsubuki S, et al.Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation[J]. Nature medicine, 2005, 11(4): 434-439. [15] Deane R, Sagare A, Zlokovic B.The role of the cell surface LRP and soluble LRP in blood-brain barrier Aβ clearance in Alzheimer's disease[J]. Current pharmaceutical design, 2008, 14(16): 1601-1605. [16] Deane R J.Is RAGE still a therapeutic target for Alzheimer's disease?[J]. Future medicinal chemistry, 2012, 4(7): 915-925. [17] Xu X-Y, Deng C-Q, Wang J, et al.Plasma levels of soluble receptor for advanced glycation end products in Alzheimer's disease[J]. International Journal of Neuroscience, 2017, 127(5): 454-458. [18] Aisen P S, Gauthier S, Ferris S H, et al.Tramiprosate in mild-to-moderate Alzheimer's disease-a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study)[J]. Archives of medical science: AMS, 2011, 7(1): 102. [19] Gupta-Bansal R, Frederickson R C, Brunden K R.Proteoglycan-mediated Inhibition of Aβ Proteolysis A Potential Cause Ause of Senile Plaque Accumulation[J]. Journal of Biological Chemistry, 1995, 270(31): 18666-18671. [20] Hey J A, Jeremy Y Y, Versavel M, et al.Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in devel-opment for the treatment of Alzheimer's Disease[J]. Clinical pharmacokinetics, 2018, 57(3): 315-333. [21] Kocis P, Tolar M, Yu J, et al.Elucidating the Aβ42 anti-aggregation mechanism of action of tramiprosate in Alzheimer's disease: integrating molecular analytical methods, pharmacokinetic and clinical data[J]. CNS drugs, 2017, 31(6): 495-509. [22] Dasilva K A, Brown M E, Cousins J E, et al.scyllo-inositol (ELND005) ameliorates amyloid pathology in an aggressive mouse model of Alzheimer's disease[J]. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2009, 5(4): 425. [23] Chauhan V, Ji L, Chauhan A.Anti-amyloidogenic, anti-oxidant and anti-apoptotic role of gelsolin in Alzheimer's disease[J]. Bioger-ontology, 2008, 9(6): 381-389. [24] Luc Buée, Thierry Bussière, Valérie Buée-Scherrer, et al.Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders[J]. Brain Research Reviews, 2000, 33(1): 95-130. [25] West S, Bhugra P.Emerging drug targets for Aβ and tau in Alzheimer's disease: a systematic review[J]. British journal of clinical pharmacology, 2015, 80(2): 221-234. [26] Garcia M L, Cleveland D W.Going new places using an old MAP: tau, microtubules and human neurodegenerative disease[J]. Current opinion in cell biology, 2001, 13(1): 41-48. [27] Katja Hochgr fe, Sydow A, Matenia D, et al. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau[J]. Acta neuropathologica communications, 2015, 3(1): 25. [28] Ponce-Lopez T, Hong E, Abascal-D AZ M, et al. Role of GSK3β and PP2A on regulation of Tau phosphorylation in hippocampus and memory impairment in ICV-STZ animal model of Alzhe-imer's disease[J]. Advances in Alzheimer's Disease, 2017, 6(1):13. [29] Engel T, Paloma Go i-Oliver, José J. Lucas, et al. Chronic lithium administration to FTDP 17 tau and GSK 3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre formed neurofibrillary tangles do not revert[J]. Journal of neurochemistry, 2006, 99(6): 1445-1455. [30] Shemesh E, Rudich A, Harman-Boehm I, et al.Effect of intranasal insulin on cognitive function: a systematic review[J]. The Journal of Clinical Endocrinology & Metabolism, 2012, 97(2): 366-376. [31] Anand R, Gill K D, Mahdi A A.Therapeutics of Alzheimer's disease: Past, present and future[J]. Neuropharmacology, 2014, 76(Pt A):27-50. [32] Gourmaud S, Paquet C, Dumurgier J, et al.Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline[J]. Journal of psychiatry & neuroscience: JPN, 2015, 40(3): 151. [33] Zhou Q, Wang M, Du Y, et al.Inhibition of c Jun N terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice[J]. Annals of neurology, 2015, 77(4): 637-654. [34] Corcoran N M, Martin D, Hutter-Paier B, et al.Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer's disease model[J]. Journal of Clinical Neuroscience, 2010, 17(8): 1025-1033. [35] Dickey C A, Kamal A, Lundgren K, et al.The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins[J]. The Journal of clinical investigation, 2007, 117(3): 648-658. [36] Ma Q-L, Zuo X, Yang F, et al.Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice[J]. Journal of Biological Chemistry, 2013, 288(6): 4056-4065. [37] Serafini M M, Catanzaro M, Rosini M, et al.Curcumin in Alzheimer's disease: Can we think to new strategies and perspectives for this molecule?[J]. Pharmacological research, 2017, 124:146-155. [38] Zhang B, Maiti A, Shively S, et al.Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(1): 227-231. [39] Monacelli F, Cea M, Borghi R, et al.Do cancer drugs counteract neurodegeneration? Repurposing for alzheimer's disease[J]. Journal of Alzheimer's Disease, 2017, 55(4): 1295-1306. [40] Brunden K R, Zhang B, Carroll J, et al.Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy[J]. Journal of Neuroscience, 2010, 30(41): 13861-13866. [41] Matsuoka Y, Jouroukhin Y, Gray A J, et al.A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer's disease[J]. Journal of Pharmacology and Experimental Therapeutics, 2008, 325(1): 146-153. [42] Moreira P, Cardoso S, Santos M, et al.The key role of mitochondria in Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2006, 9(2): 101-110. [43] Moreira P I, Santos M S, Oliveira C R.Alzheimer's disease: a lesson from mitochondrial dysfunction[J]. Antioxidants & redox signaling, 2007, 9(10): 1621-1630. [44] Cottrell D, Borthwick G, Johnson M, et al.The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer's disease[J]. Neuropathology and applied neurobiology, 2002, 28(5): 390-396. [45] Lee J, Boo J H, Ryu H.The failure of mitochondria leads to neurodegeneration: Do mitochondria need a jump start?[J]. Advanced drug delivery reviews, 2009, 61(14): 1316-1323. [46] Tauskela J S.MitoQ-a mitochondria-targeted antioxidant[J]. IDrugs: the investigational drugs journal, 2007, 10(6): 399-412. [47] Smith R A, Adlam V J, Blaikie F H, et al.Mitochondria targeted antioxidants in the treatment of disease[J]. Annals of the New York Academy of Sciences, 2008, 1147(1): 105-111. [48] Manczak M, Mao P, Calkins M J, et al.Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer's disease neurons[J]. Journal of Alzheimer's Disease, 2010, 20(s2): S609-S631. [49] Ba I T V, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease[J]. New England Journal of Medicine, 2001, 345(21): 1515-1521. [50] Deardorff W J, Grossberg G T.Targeting neuroinflammation in Alzheimer's disease: evidence for NSAIDs and novel therapeutics[J]. Expert review of neurotherapeutics, 2017, 17(1): 17-32. [51] Weggen S, Eriksen J L, Das P, et al.A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity[J]. Nature, 2001, 414(6860): 212. |
[1] | XIE Rui, GENG Zihan, BAO Lei, ZHAO Ronghua, LI Shuran, SUN Qiyue, WANG Xinwei, ZHANG Jingsheng, CUI Xiaolan, GUO Shanshan, SUN Jing. Research Progress in Pharmacological Actions, Mechanisms, Structural Modifications and Targeted Formulations of Ribavirin [J]. Chinese Journal of Pharmacovigilance, 2025, 22(8): 950-955. |
[2] | LIU Ming, ZHENG Li, ZHANG Weina, SUN Xuelin, TIAN Jinhui, ZHAO Yan. Research Progress in Biological Activity and Mechanisms of Pachymic Acid [J]. Chinese Journal of Pharmacovigilance, 2025, 22(7): 826-830. |
[3] | YE Ling, LIU Xiaoying, DANG Xuefei, LI Xuelian, LI Gang. Research Progress in Drugs for Brain Metastases from Advanced Breast Cancer [J]. Chinese Journal of Pharmacovigilance, 2025, 22(6): 714-720. |
[4] | LI Wenpeng, LIU Mingyu, CAO Ying, ZHOU Huziwei, WANG Shengfeng. Supervision status and research progress of global abuse of opioids [J]. Chinese Journal of Pharmacovigilance, 2024, 21(5): 513-518. |
[5] | LIU Sujie, YAN Jiahe, RUAN Jiaxin, WANG Chen, WANG Xiaofan, LIU Shumin, BAI Xue. Research Progress in Regulation of Wnt/β-Catenin Signaling Pathway by TCM in the Treatment of Ischemic Stroke [J]. Chinese Journal of Pharmacovigilance, 2024, 21(12): 1388-1392. |
[6] | BAI Xue, CHEN Yafei, TANG Tian, LIU Zhejun, TAN Tianyang, LIU Zhenquan. Research Progress on the Potential Therapeutic Effect of Bushen Shengjing Prescription on Oligoasthenozoospermia [J]. Chinese Journal of Pharmacovigilance, 2024, 21(11): 1243-1249. |
[7] | XIE Sihua, GAO Zhichao, ZHANG Wei, XING Jiahui, LIANG Jingwei, MENG Fanhao. Research progress in mechanisms of acquired drug resistance and EGFR-targeted therapy tolerance in non-small cell lung cancer [J]. Chinese Journal of Pharmacovigilance, 2024, 21(10): 1081-1086. |
[8] | LI Sizheng, HU Guang, HE Jingcheng, HU Yuchi, LI Zhiyong, JIN Hongtao. The Role of Renin-angiotensin System in COVID-19 and Drug Intervention [J]. Chinese Journal of Pharmacovigilance, 2020, 17(5): 267-271. |
[9] | QIU Caixia, YANG Cuiping, JIN Hongtao. Research Progress in Mechanisms of Drug-induced Kidney Injury [J]. Chinese Journal of Pharmacovigilance, 2019, 16(11): 688-694. |
[10] | LI En-can, HE Jiu-ming, JIN Hong-tao, LIN Ni. Research Progress of Pharmacological Activity and Toxicity of 5-Hydroxymethylfurfural [J]. Chinese Journal of Pharmacovigilance, 2018, 15(4): 210-215. |
[11] | SHI Liang,SUN Rong. Advances in Establishment of Animal Models with Hepatic Cirrhosis and Thinking about Efficacy Evaluation of Traditional Chinese Medicine [J]. Chinese Journal of Pharmacovigilance, 2016, 13(1): 32-35. |
[12] | LUAN Yong-fu, SUN Rong. Advances in Establishments of Animal Models with Rheumatoid Arthritis and Thinking about Efficacy Evaluation of TCM [J]. Chinese Journal of Pharmacovigilance, 2014, 11(4): 219-221. |
[13] | QIAN Ya-qin. Progress in the Methods for Determination of Synephrine [J]. Chinese Journal of Pharmacovigilance, 2011, 8(9): 546-548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||