

Chinese Journal of Pharmacovigilance ›› 2025, Vol. 22 ›› Issue (10): 1177-1182.
DOI: 10.19803/j.1672-8629.20250615
Previous Articles Next Articles
MENG Hexin1,2, WANG Yue2△, LIU Youping1#, LIU Bo2,*
Received:2025-09-02
Online:2025-10-15
Published:2025-10-20
CLC Number:
MENG Hexin, WANG Yue, LIU Youping, LIU Bo. Characterization of Higher-Order Structures in Protein Pharmaceuticals: a Study of Methods and Advances[J]. Chinese Journal of Pharmacovigilance, 2025, 22(10): 1177-1182.
| [1] YAN RL, LIAO Y.Correct Higher-Order Structure Is the Fundamental Prerequisite for Biological Activity of Proteins[J]. Biology Teaching(生物学教学), 2015, 40(11): 59-60. [2] WANG Y, NIU S, LI B, et al.Improvement of Stability and in vivo Antioxidant Effect of Human Glutathione Peroxidase Mutant by Pegylation[J]. Int J Pharm, 2021, 609: 121152. [3] ZHANG GY, WANG YW, GUO LY, et al.Pegylation and Antioxidant Effects of a Human Glutathione Peroxidase 1 Mutant[J]. Aging (Albany NY), 2022, 14(1): 443-461. [4] LIU D, REN D, HUANG H, et al.Structure and Stability Changes of Human Igg1 Fc as a Consequence of Methionine Oxidation[J]. Biochemistry, 2008, 47(18): 5088-5100. [5] SHAH DD, SINGH SM, MALLELA KMG.Effect of Chemical Oxidation on the Higher Order Structure, Stability, Aggregation, and Biological Function of Interferon Alpha-2a: Role of Local Structural Changes Detected by 2d Nmr[J]. Pharm Res, 2018, 35(12): 232. [6] HILGENFELD R, SEIPKE G, BERCHTOLD H, et al.The Evolution of Insulin Glargine and Its Continuing Contribution to Diabetes Care[J]. Drugs, 2014, 74(8): 911-927. [7] LI C, LI T, TIAN X, et al.Research Progress on the Pegylation of Therapeutic Proteins and Peptides (Tpps)[J]. Front Pharmacol, 2024, 15: 1353626. [8] PHILLIPS JJ, BUCHANAN A, ANDREWS J, et al.Rate of Asparagine Deamidation in a Monoclonal Antibody Correlating with Hydrogen Exchange Rate at Adjacent Downstream Residues[J]. Anal Chem, 2017, 89(4): 2361-2368. [9] QIU H, WEI R, JAWORSKI J, et al.Engineering an Anti-Cd52 Antibody for Enhanced Deamidation Stability[J]. MAbs, 2019, 11(7): 1266-1275. [10] WANG HM, WEN N, WANG XX.Evaluation Methods and Research Progress in Immunogenicity of Protein Peptide Drugs and Monoclonal Antibody Drugs[J]. Chinese Journal of Medicinal Biotechnology(中国医药生物技术), 2021, 16(3): 251-255. [11] GRUDZINSKA-GOEBEL J, BENSTEIN K, BLOEM K, et al.Immunogenicity Risk Assessment for Tailored Mitigation and Monitoring of Biotherapeutics during Development: Recommendations from the European Immunogenicity Platform[J]. Front Immunol, 2025, 16: 1581153. [12] WANG HR, WU YH, HE P.Research Progress on the Effect of Glycosylation on Vaccine Immunogenicity[J]. Chinese Journal of New Drugs(中国新药杂志), 2024, 33(3): 241-246. [13] BABETTE W, MATEUSZ P, ISABELLE B, et al.Therapeutic Antibody Glycosylation Impacts Antigen Recognition and Immuno-genicity[J]. Immunology, 2022, 166(3): 380-407. [14] S CHER T, BODIER-MONTAGUTELLI E, PARENT C, et al. Aggregates Associated with Instability of Antibodies during Aeroso-lization Induce Adverse Immunological Effects[J]. Pharmaceutics, 2022, 14(3): 671. [15] WANG CJ, FENG JN, WANG J.Influencing Factors and Optimization Strategies for the Stability of Monoclonal Antibody Drugs[J]. Chinese Journal of Immunology(中国免疫学杂志), 2021, 37(17): 2154-2160. [16] JONES C.Circular Dichroism of Biopharmaceutical Proteins in a Quality-Regulated Environment[J]. J Pharm Biomed Anal, 2022, 219: 114945. [17] AMI D, NATALELLO A.Characterization of the Conformational Properties of Soluble and Insoluble Proteins by Fourier Transform Infrared Spectroscopy[J]. Methods Mol Biol, 2022, 2406: 439-454. [18] HUANG RY, CHEN G.Higher Order Structure Characterization of Protein Therapeutics by Hydrogen/Deuterium Exchange Mass Spectrometry[J]. Anal Bioanal Chem, 2014, 406(26): 6541-6558. [19] LIU B, ZHANG L, ZHU T, et al.Structural Characterization of Polysaccharides of Marine Origin: a Review[J]. Int J Biol Macromol, 2025, 317(Pt 1): 144797. [20] RUMA YN, NANNENGA BL, GONEN T.Unraveling Atomic Complexity from Frozen Samples[J]. Struct Dyn, 2025, 12(2): 020901. [21] NOGALES E, SCHERES SH.Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity[J]. Molecular cell, 2015, 58(4): 677-689. [22] LIU N, ZHANG J, CHEN Y, et al.Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy[J]. J Am Chem Soc, 2019, 141(9): 4016-4025. [23] SCAPIN G, DANDEY VP, ZHANG Z, et al.Structure of the Insulin Receptor-Insulin Complex by Single-Particle Cryo-EM Analysis[J]. Nature, 2018, 556(7699): 122-125. [24] LONG F, FONG RH, AUSTIN SK, et al.Cryo-EM Structures Elucidate Neutralizing Mechanisms of Anti-Chikungunya Human Monoclonal Antibodies with Therapeutic Activity[J]. Proc Natl Acad Sci U S A, 2015, 112(45): 13898-13903. [25] ZHANG S, JIA W, ZENG J, et al.Cryoelectron Microscopy Structures of a Human Neutralizing Antibody Bound to Mers-Cov Spike Glycoprotein[J]. Front Microbiol, 2022, 13: 988298. [26] PURDY MD, SHI D, CHRUSTOWICZ J, et al.Microed Structures of Hiv-1 Gag Ctd-Sp1 Reveal Binding Interactions with the Maturation Inhibitor Bevirimat[J]. Proc Natl Acad Sci USA, 2018, 115(52): 13258-13263. [27] MARTYNOWYCZ MW, SHIRIAEVA A, GE X, et al.Microed Structure of the Human Adenosine Receptor Determined from a Single Nanocrystal in Lcp[J]. Proc Natl Acad Sci USA, 2021, 118(36): e2106041118. [28] HAYMAKER A, NANNENGA BL.Advances and Applications of Microcrystal Electron Diffraction (Microed)[J]. Curr Opin Struct Biol, 2024, 84: 102741. [29] NANNENGA BL, SHI D, HATTNE J, et al.Structure of Catalase Determined by Microed[J]. eLife, 2014, 3: e03600. [30] ZEE CT, SAHA A, SAWAYA MR, et al.Ab Initio Determination of Peptide Structures by Microed[J]. Methods Mol Biol, 2021, 2215: 329-348. [31] MIRZA S, AHMAD MS.Applications of Microed in Structural Biology and Structure-Based Drug Discovery[J]. Biochim Biophys Acta Gen Subj, 2025, 1869(3): 130758. [32] HEYDARI S, LIU J.High-Throughput Cryo-Electron Tomography Enables Multiscale Visualization of the Inner Life of Microbes[J]. Curr Opin Struct Biol, 2025, 93: 103065. [33] KELLER J, FERNáNDEZ-BUSNADIEGO R. In Situ Studies of Membrane Biology by Cryo-Electron Tomography[J]. Curr Opin Cell Biol, 2024, 88: 102363. [34] NOGALES E, MAHAMID J.Bridging Structural and Cell Biology with Cryo-Electron Microscopy[J]. Nature, 2024, 628(8006): 47-56. [35] HAGEN WJH, WAN W, BRIGGS JAG.Implementation of a Cryo-Electron Tomography Tilt-Scheme Optimized for High Resolution Subtomogram Averaging[J]. J Struct Biol, 2017, 197(2): 191-198. [36] TURK M, BAUMEISTER W.The Promise and the Challenges of Cryo-Electron Tomography[J]. FEBS Lett, 2020, 594(20): 3243-3261. [37] XING H, TANIGUCHI R, KHUSAINOV I, et al.Translation Dynamics in Human Cells Visualized at High Resolution Reveal Cancer Drug Action[J]. Science, 2023, 381(6653): 70-75. [38] DONG D, SONG Y, WU S, et al. Molecular Basis of Ad5-Ncov Vaccine-Induced Immunogenicity[J]. Structure, 2025, 33(5): 858-868.e855. [39] TRAN MH, SCHOEDER CT, SCHEY KL, et al.Computational Structure Prediction for Antibody-Antigen Complexes from Hydrogen-Deuterium Exchange Mass Spectrometry: Challenges and Outlook[J]. Front Immunol, 2022, 13: 859964. [40] ANACLETO J, LENTO C, SARPE V, et al.Apparatus for Automated Continuous Hydrogen Deuterium Exchange Mass Spectrometry Measurements from Milliseconds to Hours[J]. Anal Chem, 2023, 95(9): 4421-4428. [41] CHENG M, GROSS ML.Mass Spectrometry-Based Protein Footp-rinting for Protein Structure Characterization[J]. Acc Chem Res, 2025, 58(2): 165-176. [42] STANDER S, L RG, SCARSELLI M, et al. Epitope Mapping of Polyclonal Antibodies by Hydrogen-Deuterium Exchange Mass Spectrometry (Hdx-Ms)[J]. Anal Chem, 2021, 93(34): 11669-11678. [43] PIERANGELINI A, KESSLER BM, O'BRIEN DP. Driving Therapeutic Innovation in Neurodegenerative Disease with Hydrogen Deuterium Exchange Mass Spectrometry[J]. Mol Cell Proteomics, 2025: 101017. [44] LI KS, SHI L, GROSS ML.Mass Spectrometry-Based Fast Photo-chemical Oxidation of Proteins (Fpop) for Higher Order Structure Characterization[J]. Acc Chem Res, 2018, 51(3): 736-744. [45] LIN Y, MOYLE AB, BEAUMONT VA, et al.Characterization of Higher Order Structural Changes of a Thermally Stressed Monoclonal Antibody Via Mass Spectrometry Footprinting and Other Biophysical Approaches[J]. Anal Chem, 2023, 95(46): 16840-16849. [46] ZHANG Y, WECKSLER AT, MOLINA P, et al.Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (Fpop) and Mass Spectrometry[J]. J Am Soc Mass Spectrom, 2017, 28(5): 850-858. [47] CORNWELL O, AULT JR.Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry[J]. Biochim Biophys Acta Proteins Proteom, 2022, 1870(9): 140829. [48] ZHANG J, LIU CL, LI X.Research Progress in Cross-Linking Mass Spectrometry Technology[J]. Chemistry and Bioengineering(化学与生物工程), 2020, 37(11): 1-11. [49] PROCHAZKOVA V, ROSULEK M, KARPISEK M, et al.Utilization of High-Resolution Mass Spectrometry and Data-Independent Analysis to Track the Monoclonal Antibody Spatial Stability[J]. Expert Rev Proteomics, 2025: 1-9. [50] SLAVIN M, ZAMEL J, ZOHAR K, et al.Targeted in Situ Cross-Linking Mass Spectrometry and Integrative Modeling Reveal the Architectures of Three Proteins from Sars-Cov-2[J]. Proc Natl Acad Sci USA, 2021, 118(34): e2103554118. [51] YAN RL, LIAO Y.Correct Higher-Order Structure Is the Fundamental Prerequisite for Biological Activity of Proteins[J]. Biology Teaching(生物学教学), 2022, 49(4): 737-758. [52] GAO H, ZHAO Q, GONG Z, et al.Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures[J]. Anal Chem, 2022, 94(36): 12398-12406. [53] RAPPSILBER J, SINIOSSOGLOU S, HURT EC, et al.A Generic Strategy to Analyze the Spatial Organization of Multi-Protein Complexes by Cross-Linking and Mass Spectrometry[J]. Anal Chem, 2000, 72(2): 267-275. [54] JONES AX, CAO Y, TANG YL, et al.Improving Mass Spectrometry Analysis of Protein Structures with Arginine-Selective Chemical Cross-Linkers[J]. Nat Commun, 2019, 10(1): 3911. [55] XIE Y, WANG J, YANG L, et al.Transient Cross-Linking Mass Spectrometry: Taking Conformational Snapshots of Proteins[J]. Anal Chem, 2025, 97(10): 5488-5497. [56] YU C, NOVITSKY EJ, CHENG NW, et al.Exploring Spacer Arm Structures for Designs of Asymmetric Sulfoxide-Containing Ms-Cleavable Cross-Linkers[J]. Anal Chem, 2020, 92(8): 6026-6033. [57] CALABRESE AN, SCHIFFRIN B, WATSON M, et al.Inter-Domain Dynamics in the Chaperone Sura and Multi-Site Binding to Its Outer Membrane Protein Clients[J]. Nat Commun, 2020, 11(1): 2155. [58] MCCOY KM, ACKERMAN ME, GRIGORYAN G.A Comparison of Antibody-Antigen Complex Sequence-to-Structure Prediction Methods and Their Systematic Biases[J]. Protein Sci, 2024, 33(9): e5127. [59] ZHAO F, QIU J, XIANG D, et al.DeepAMPNet: A Novel Antimicrobial Peptide Predictor Employing Alphafold2 Predicted Structures and a Bi-Directional Long Short-Term Memory Protein Language Model[J]. PeerJ, 2024, 12: e17729. [60] ETHIRAJULU AK, SRIRAMOJU V, BHAT AG, et al.Evaluating Alphafold for Clinical Pharmacology and Pharmacogenetics: a Case-Study of Huntingtin Variants Linked to Huntington's Disease[J]. Aaps J, 2024, 26(6): 106. [61] QIU X, LI H, VER STEEG G, et al.Advances in AI for Protein Structure Prediction: Implications for Cancer Drug Discovery and Development[J]. Biomolecules, 2024, 14(3): 339. [62] ABRAMSON J, ADLER J, DUNGER J, et al.Accurate Structure Prediction of Biomolecular Interactions with Alphafold 3[J]. Nature, 2024, 630(8016): 493-500. [63] BAEK M, DIMAIO F, ANISHCHENKO I, et al.Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network[J]. Science, 2021, 373(6557): 871-876. [64] KIM G, LEE S, LEVY KARIN E, et al.Easy and Accurate Protein Structure Prediction Using Colabfold[J]. Nat Protoc, 2025, 20(3): 620-642. [65] MIRDITA M, SCHUTZE K, MORIWAKI Y, et al.Colabfold: Making Protein Folding Accessible to All[J]. Nat Methods, 2022, 19(6): 679-682. [66] FURUI K, OHUE M.Benchmarking Helixfold3-Predicted Holo Structures for Relative Free Energy Perturbation Calculations[J]. ACS Omega, 2025, 10(11): 11411-11420. |
| [1] | QI Yujie, WANG Xin, ZHANG Jiahui, MA Enlong, GENG Xingchao. Research Progress in Integration Sites for Cellular and Gene Therapy Products [J]. Chinese Journal of Pharmacovigilance, 2025, 22(7): 721-727. |
| [2] | ZHU Huijuan, REN Jingtian. Safety Risks of Human Rabies Immunoglobulin [J]. Chinese Journal of Pharmacovigilance, 2025, 22(7): 786-789. |
| [3] | WANG Yali. Discuss about Vaccine Enhancement of Disease [J]. Chinese Journal of Pharmacovigilance, 2021, 18(4): 338-340. |
| [4] | DENG Xia, LIU Bo, WANG Yuanzheng, YIN Xiao, SU Yao, ZHANG Yan, LI Yingli, GAO Chenyan, YANG Huan, WANG Tao. Antibody-Dependent Enhancement of Vaccines and Development of Coronavirus Vaccines [J]. Chinese Journal of Pharmacovigilance, 2021, 18(3): 201-205. |
| [5] | JIANG RuiJu, YIN QiongZhou, XU MingJue, ZHAO ZhiMei, DENG Yan, NING Ruotong, CHE YanChun. Adverse Events Induced by Immunization of Concomitant Inoculation of Freeze-dried Hepatitis A (Live) Vaccine with Vaccines for National Immunization Program from Surveillance Data [J]. Chinese Journal of Pharmacovigilance, 2020, 17(10): 710-714. |
| [6] | LIU Min, HU Xue, LI Yanjiao, SONG Yanqing, WANG Xiangfeng. Labeling of Instructions for Biopharmaceuticals for Intravenous Infusion [J]. Chinese Journal of Pharmacovigilance, 2020, 17(3): 165-168. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||