中国药物警戒 ›› 2023, Vol. 20 ›› Issue (11): 1201-1208.
DOI: 10.19803/j.1672-8629.20230430
林琦琪1, 李馨阳2#, 孟繁浩1,*
收稿日期:
2023-07-12
出版日期:
2023-11-15
发布日期:
2023-11-13
通讯作者:
*孟繁浩,男,博士,二级教授,药物作用机制研究。E-mail: fhmeng@cmu.edu.cn,#为共同通信作者。
作者简介:
孟繁浩,药学博士,二级教授,博士研究生导师。国务院政府特殊津贴专家、辽宁省特聘教授。辽宁省药学会药物化学专业委员会副主任委员、辽宁省生物技术协会理事、辽宁省突发公共卫生事件专家咨询委员会专家。主编《药物化学》《药物设计学》等高等医药院校统编教材16部。已发表学术论文200余篇,发明专利35项,计算机软件著作权登记证书3项,新药证书10项。获得辽宁省科技进步一等奖/二等奖、辽宁省普通高等教育教学一等奖、辽宁省自然科学学术成果二等奖等多项成果。《中国药物警戒》等期刊编委。林琦琪,女,硕士,耐药机制研究。
基金资助:
LIN Qiqi1, LI Xinyang2#, MENG Fanhao1,*
Received:
2023-07-12
Online:
2023-11-15
Published:
2023-11-13
摘要: 目的 研究培美曲塞治疗非小细胞肺癌(NSCLC)的耐药机制。方法 从癌基因、DNA合成及修复、生物学行为等方面分析非小细胞肺癌培美曲塞耐药的可能机制。结果 基因突变及相关分子(EGFR、ALK、ROS1、KRAS和NRAS、TTF-1、HDAC)变化、培美曲塞的靶点酶(TS、DHFR和GARFT以及RRM1和MTHFR)变化、DNA修复系统(BER、NER以及CHK1、MSH2和Ku蛋白)的较高状态、肿瘤迁移和转移过程(激活EMT、癌症细胞干细胞和生物标记物)的变化都可能是导致NSCLC细胞对培美曲塞敏感性降低的因素。结论 培美曲塞耐药机制多样,可根据NSCLC患者的具体基因型选择治疗方案,改善患者无病进展期和生存率。
中图分类号:
林琦琪, 李馨阳, 孟繁浩. 非小细胞肺癌培美曲塞的耐药机制研究[J]. 中国药物警戒, 2023, 20(11): 1201-1208.
LIN Qiqi, LI Xinyang, MENG Fanhao. Drug resistance mechanism of pemetrexed in non-small cell lung cancer[J]. Chinese Journal of Pharmacovigilance, 2023, 20(11): 1201-1208.
[1] ZHANG CH, XIE YJ, PENG TT, et al.Efficacy and safety of osimertinib in the treatment of egfr-mutated advanced non-small cell lung cancer:a meta-analysis[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2021, 18(2): 178-183. [2] RECK M, RODRÍGUEZ-ABREU D, ROBINSON AG, et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50[J]. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 2021, 39(21): 2339-2349. [3] LOPCI E, ROSSI S.Tumor metabolism and prognostic role of EZH2 in non-small cell lung cancer[J]. Translational Cancer Research, 2017, 6(S6): S982-S988. [4] ZHANG JW, DUAN DM, YUAN XS, et al.Clinical observation of thalidomide combined paclitaxel and cisplatin in treatment of advanced non-small cell lung cancer[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2017, 14(8): 460-463. [5] NAGA SAKA M, GADGEEL SM.Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer[J]. Expert Rev Anticancer Ther, 2018, 18(1): 63-70. [6] ALHALABI O, CHEN J, ZHANG Y, et al.MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers[J]. Nature Communications, 2022, 13: 1797. [7] SHIH JY, INOUE A, CHENG R, et al.Does pemetrexed work in targetable, nonsquamous non-small-cell lung cancer? a narrative review[J]. Cancers, 2020, 12(9): 2658. [8] KUMAGAI S, KOYAMA S, NISHIKAWA H.Antitumour immunity regulated by aberrant ERBB family signalling[J]. Nature Reviews Cancer, 2021, 21(3): 181-197. [9] WU MF, HSIAO YM, HUANG CF, et al.Genetic determinants of pemetrexed responsiveness and nonresponsiveness in non-small cell lung cancer cells[J]. Journal of Thoracic Oncology, 2010, 5(8): 1143-1151. [10] IGAWA S, YUICHI S, MIKIKO I, et al.EGFR mutation genotype impact on the efficacy of pemetrexed in patients with nonsquamous nonsmall cell lung cancer[J]. Asian Pacific Journal of Cancer Prevention, 2016, 17(7): 3249-3253. [11] YU Z, LI XM, LIU SH, et al.Downregulation of both EGFR and ErbB3 improves the cellular response to pemetrexed in an established pemetrexed-resistant lung adenocarcinoma A549 cell line[J]. Oncology Reports, 2014, 31(4): 1818-1824. [12] LU S, WU L, JIAN H, et al.Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial[J]. The Lancet Oncology, 2022, 23(9): 1167-1179. [13] GOLDING B, LUU A, JONES R, et al.The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC)[J]. Molecular Cancer, 2018, 17(1): 52. [14] REMON J, PIGNATARO D, NOVELLO S, et al.Current treatment and future challenges in ROS1- and ALK-rearranged advanced non-small cell lung cancer[J]. Cancer Treatment Reviews, 2021, 95: 102178. [15] LEE HY, AHN HK, JEONG JY, et al.Favorable clinical outcomes of pemetrexed treatment in anaplastic lymphoma kinase positive non-small-cell lung cancer[J]. Lung Cancer, 2013, 79(1): 40-45. [16] PARK S, PARK TS, CHOI CM, et al.Survival benefit of pemetrexed in lung adenocarcinoma patients with anaplastic lymphoma kinase gene rearrangements[J]. Clinical Lung Cancer, 2015, 16(5): e83-e89. [17] LEE JO, KIM TM, LEE SH, et al.Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer[J]. Journal of Thoracic Oncology, 2011, 6(9): 1474-1480. [18] KWON JH, KIM KJ, SUNG JH, et al.Afatinib overcomes pemetrexed-acquired resistance in non-small cell lung cancer cells harboring an EML4-ALK rearrangement[J]. Cells, 2019, 8(12): 1538. [19] CHEN YF, HSIEH MS, WU SG, et al.Efficacy of pemetrexed-based chemotherapy in patients with ros1 fusion-positive lung adenocarcinoma compared with in patients harboring other driver mutations in east asian populations[J]. Journal of Thoracic Oncology, 2016, 11(7): 1140-1152. [20] DEARDEN S, STEVENS J, WU YL, et al.Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap)[J]. Annals of Oncology, 2013, 24(9): 2371-2376. [21] LIANG Y, WAKELEE HA, NEAL JW.Relationship of driver oncogenes to long-term pemetrexed response in non-small-cell lung cancer[J]. Clinical Lung Cancer, 2015, 16(5): 366-373. [22] CUI J, XU F, BAI W, et al.HDAC inhibitor ITF2357 reduces resistance of mutant-KRAS non-small cell lung cancer to pemetrexed through a HDAC2/miR-130a-3p-dependent mechanism[J]. Journal of Translational Medicine, 2023, 21(1): 125. [23] WU SG, YANG CH, YU CJ, et al.Good response to pemetrexed in patients of lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutations[J]. Lung Cancer, 2011, 72(3): 333-339. [24] WU MF, HSIAO YM, HUANG CF, et al.Genetic determinants of pemetrexed responsiveness and nonresponsiveness in non-small cell lung cancer cells[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2010, 5(8): 1143-1151. [25] SUN J, AHN JS, PARK K, et al.Significance of thymidylate synthase and thyroid transcription factor 1 expression in patients with nonsquamous non-small cell lung cancer treated with pemetrexed-based chemotherapy[J]. Journal of Clinical Oncology, 2011, 29(15 suppl): 7579. [26] REKHTMAN N, ANG DC, SIMA CS, et al.Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens[J]. Modern Pathology, 2011, 24(10): 1348-1359. [27] GRØNBERG BH, LUND-IVERSEN M, STRØM EH, et al. Associations between TS, TTF-1, FR-α, FPGS, and overall survival in patients with advanced non-small-cell lung cancer receiving pemetrexed plus carboplatin or gemcitabine plus carboplatin as first-line chemotherapy[J]. Journal of Thoracic Oncology, 2013, 8(10): 1255-1264. [28] SUN JM, HAN J, AHN JS, et al.Significance of thymidylate synthase and thyroid transcription factor 1 expression in patients with nonsquamous non-small cell lung cancer treated with pemetrexed-based chemotherapy[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2011, 6(8): 1392-1399. [29] LIU Y, HUBER RM, KIEFL R, et al.Hedgehog pathway activation might mediate pemetrexed resistance in NSCLC cells[J]. Anticancer Research, 2020, 40(3): 1451-1458. [30] LIANG J, LU T, CHEN Z, et al.Mechanisms of resistance to pemetrexed in non-small cell lung cancer[J]. Translational Lung Cancer Research, 2019, 8(6): 1107-1118. [31] HANAUSKE AR, EISMANN U, OBERSCHMIDT O, et al. [32] HOU J, LAMBERS M, DEN HAMER B, et al.Expression profiling-based subtyping identifies novel non-small cell lung cancer subgroups and implicates putative resistance to pemetrexed therapy[J]. Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer, 2012, 7(1): 105-114. [33] CHEN X, YANG Y, KATZ S.Early detection of thymidylate synthase resistance in non-small cell lung cancer with FLT-PET imaging[J]. Oncotarget, 2017, 8(47): 82705-82713. [34] BEPLER G, SOMMERS KE, CANTOR A, et al.Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer[J]. Journal of Thoracic Oncology, 2008, 3(10): 1112-1118. [35] CHRISTOPH DC, ASUNCION BR, HASSAN B, et al.Significance of folate receptor alpha and thymidylate synthase protein expression in patients with non-small-cell lung cancer treated with pemetrexed[J]. Journal of Thoracic Oncology, 2013, 8(1): 19-30. [36] ZHANG D, OCHI N, TAKIGAWA N, et al.Establishment of pemetrexed-resistant non-small cell lung cancer cell lines[J]. Cancer Letters, 2011, 309(2): 228-235. [37] SHIMIZU T, NAKAGAWA Y, TAKAHASHI N, et al.Thymidylate synthase gene amplification predicts pemetrexed resistance in patients with advanced non-small cell lung cancer[J]. Clinical & Translational Oncology : Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 2016, 18(1): 107-112. [38] OZASA H, OGURI T, UEMURA T, et al.Significance of thymidylate synthase for resistance to pemetrexed in lung cancer[J]. Cancer Science, 2010, 101(1): 161-166. [39] ARÉVALO E, CASTAÑÓN E, LÓPEZ I, et al. Thymidylate synthase polymorphisms in genomic DNA as clinical outcome predictors in a European population of advanced non-small cell lung cancer patients receiving pemetrexed[J]. Journal of Translational Medicine, 2014, 12(1): 98. [40] KRAWCZYK P, KUCHARCZYK T, KOWALSKI DM, et al.Polymorphisms in TS, MTHFR and ERCC1 genes as predictive markers in first-line platinum and pemetrexed therapy in NSCLC patients[J]. Journal of Cancer Research and Clinical Oncology, 2014, 140(12): 2047-2057. [41] WANG X, WANG Y, WANG Y, et al.Association of thymidylate synthase gene 3’-untranslated region polymorphism with sensitivity of non-small cell lung cancer to pemetrexed treatment: TS gene polymorphism and pemetrexed sensitivity in NSCLC[J]. Journal of Biomedical Science, 2013, 20(1): 5. [42] BESSE B, OLAUSSEN KA, SORIA JC.ERCC1 and RRM1: ready for prime time?[J]. Journal of Clinical Oncology, 2013, 31(8): 1050-1060. [43] CRIDER KS, YANG TP, BERRY RJ, et al.Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role[J]. Advances in Nutrition, 2012, 3(1): 21-38. [44] SMIT EF, BURGERS SA, BIESMA B, et al.Randomized phase II and pharmacogenetic study of pemetrexed compared with pemetrexed plus carboplatin in pretreated patients with advanced non-small-cell lung cancer[J]. Journal of Clinical Oncology, 2009, 27(12): 2038-2045. [45] WEBLEY SD, WELSH SJ, JACKMAN AL, et al.The ability to accumulate deoxyuridine triphosphate and cellular response to thymidylate synthase (TS) inhibition[J]. British Journal of Cancer, 2001, 85(3): 446-452. [46] VAN TRIEST B, PINEDO HM, GIACCONE G, et al.Downstream molecular determinants of response to 5-fluorouracil and antifolate thymidylate synthase inhibitors[J]. Annals of Oncology, 2000, 11(4): 385-391. [47] WILSON PM, LABONTE MJ, LENZ HJ, et al.Inhibition of dutpase induces synthetic lethality with thymidylate synthase-targeted therapies in non-small cell lung cancer[J]. Molecular Cancer Therapeutics, 2012, 11(3): 616-628. [48] WEEKS LD, FU P, GERSON SL.Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed[J]. Molecular Cancer Therapeutics, 2013, 12(10): 2248-2260. [49] LEE SH, NOH KB, LEE JS, et al.Thymidylate synthase and ERCC1 as predictive markers in patients with pulmonary adenocarcinoma treated with pemetrexed and cisplatin[J]. Lung Cancer, 2013, 81(1): 102-108. [50] LIAO WY, HO CC, TSAI TH, et al.Combined effect of ERCC1 and ERCC2 polymorphisms on overall survival in non-squamous non-small-cell lung cancer patients treated with first-line pemetrexed/platinum[J]. Lung Cancer, 2018, 118: 90-96. [51] GRABAUSKIENE S, BERGERON EJ, CHEN G, et al.CHK1 levels correlate with sensitization to pemetrexed by CHK1 inhibitors in non-small cell lung cancer cells[J]. Lung Cancer, 2013, 82(3): 477-484. [52] TUNG CL, CHIU HC, JIAN YJ, et al.Down-regulation of MSH2 expression by an Hsp90 inhibitor enhances pemetrexed-induced cytotoxicity in human non-small-cell lung cancer cells[J]. Experimental Cell Research, 2014, 322(2): 345-354. [53] SHANG B, JIA Y, CHEN G, et al.Ku80 correlates with neoadjuvant chemotherapy resistance in human lung adenocarcinoma, but reduces cisplatin/pemetrexed-induced apoptosis in A549 cells[J]. Respiratory Research, 2017, 18(1): 56. [54] ZAMAGNI A, PASINI A, PIRINI F, et al.CDKN1A upregulation and cisplatin-pemetrexed resistance in non-small cell lung cancer cells[J]. International Journal of Oncology, 2020, 56(6): 1574-1584. [55] KARAMANOU K, FRANCHI M, VYNIOS D, et al.Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator[J]. Seminars in Cancer Biology, 2020, 62: 125-133. [56] LIANG SQ, MARTI TM, DORN P, et al.Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer[J]. Cell Death & Disease, 2015, 6(7): e1824-e1824. [57] CHIU LY, HSIN IL, YANG TY, et al.The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids[J]. Oncogene, 2016, 36(2): 242-253. [58] WANG W, LIU W, CHEN Q, et al.Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy[J]. Seminars in Cancer Biology, 2022, 87: 84-97. [59] ZHAO M, ZHANG Y, ZHANG H, et al.Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma[J]. Lung Cancer, 2015, 87(2): 98-106. [60] SHEN HT, CHIEN PJ, CHEN SH, et al.BMI1-mediated pemetrexed resistance in non-small cell lung cancer cells is associated with increased sp1 activation and cancer stemness[J]. Cancers, 2020, 12(8): 2069. [61] CHANG WW, WANG BY, CHEN SH, et al.MiR-145-5p targets Sp1 in non-small cell lung cancer cells and links to Bmi1 induced pemetrexed resistance and epithelial-mesenchymal transition[J]. International Journal of Molecular Sciences, 2022, 23(23): 15352. [62] WEN Y, GAMAZON ER, BLEIBEL WK, et al.An eQTL-based method identifies CTTN and ZMAT3 as pemetrexed susceptibility markers[J]. Human Molecular Genetics, 2011, 21(7): 1470-1480. [63] CEPPI P, RAPA I, LO IACONO M, et al.Expression and pharmacological inhibition of thymidylate synthase and Src kinase in nonsmall cell lung cancer[J]. International Journal of Cancer, 2011, 130(8): 1777-1786. [64] CHOU HC, CHEN JY, LIN DY, et al.Identification of up- and down-regulated proteins in pemetrexed-resistant human lung adenocarcinoma: flavin reductase and calreticulin play key roles in the development of pemetrexed-associated resistance[J]. Journal of Proteome Research, 2015, 14(11): 4907-4920. [65] LI X, LIANG Q, ZHOU L, et al. Survivin degradation by bergenin overcomes pemetrexed resistance[J/OL]. Cellular Oncology (Dordrecht), (2023-09-09)[2023-09-01]. https://link.springer.com/journal/13402/online-first. [66] LIAO J, QING X, DENG G, et al.Gastrodin destabilizes survivin and overcomes pemetrexed resistance[J]. Cellular Signalling, 2023, 110: 110851. [67] SHI SB, WANG M, TIAN J, et al.MicroRNA 25 , microRNA 145, and microRNA 210 as biomarkers for predicting the efficacy of maintenance treatment with pemetrexed in lung adenocarcinoma patients who are negative for epidermal growth factor receptor mutations or anaplastic lymphoma kinase translocations[J]. Translational Research, 2016, 170: 1-7. [68] BUTI S, BORDI P, TISEO M, et al.Predictive role of erythrocyte macrocytosis during treatment with pemetrexed in advanced non-small cell lung cancer patients[J]. Lung Cancer, 2015, 88(3): 319-324. [69] NORONHA V, PATIL VM, JOSHI A, et al.Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer[J]. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 2020, 38(2): 124-136. [70] AO L, FANG S, ZHANG K, et al.Sequence-dependent synergistic effect of aumolertinib-pemetrexed combined therapy on EGFR-mutant non-small-cell lung carcinoma with pre-clinical and clinical evidence[J]. Journal of Experimental & Clinical Cancer Research, 2022, 41(1): 163. [71] SHAW AT, KIM TM, CRINÒ L, et al.Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial[J]. The Lancet. Oncology, 2017, 18(7): 874-886. [72] SORIA JC, TAN DSW, CHIARI R, et al.First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study[J]. Lancet (London, England), 2017, 389(10072): 917-929. [73] SHAW AT, KIM DW, NAKAGAWA K, et al.Crizotinib versus chemotherapy in advanced ALK-positive lung cancer[J]. The New England Journal of Medicine, 2013, 368(25): 2385-2394. [74] CHEN Y, ZHANG C, JIN S, et al.Pemetrexed induces ROS generation and cellular senescence by attenuating TS-mediated thymidylate metabolism to reverse gefitinib resistance in NSCLC[J]. Journal of Cellular and Molecular Medicine, 2023, 27(14): 2032-2044. [75] DAVAR D, KIRKWOOD JM.PD-1 immune checkpoint inhibitors and immune-related adverse events: understanding the upside of the downside of checkpoint blockade[J]. JAMA oncology, 2019, 5(7): 942-943. [76] BRAHMER JR, PARDOLL DM.Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer[J]. Cancer Immunology Research, 2013, 1(2): 85-91. [77] ARBOUR KC, RIELY GJ.Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review[J]. JAMA, 2019, 322(8): 764-774. [78] GANDHI L, RODRÍGUEZ-ABREU D, GADGEEL S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. The New England Journal of Medicine, 2018, 378(22): 2078-2092. [79] KIM ES.Chemotherapy resistance in lung cancer[J]. Adv Exp Med Biol, 2016, 893: 189-209. [80] JARMULA A.Antifolate inhibitors of thymidylate synthase as anticancer drugs[J]. Mini-Reviews in Medicinal Chemistry, 2010, 10(13): 1211-1222. |
[1] | 王欣, 史磊磊, 张雨涵, 谢允东, 刘继平. 多药耐药相关蛋白转运体在药物性肝损伤中的作用研究进展[J]. 中国药物警戒, 2024, 21(2): 229-234. |
[2] | 黄巍, 吴瑞卿, 孙华, 石建功, 刘潜. 天然产物EM-E-11-4逆转人口腔上皮癌细胞KBV200多药耐药作用及其机制[J]. 中国药物警戒, 2023, 20(4): 403-408. |
[3] | 梁艳, 闫加庆, 杨珺. 注射用培美曲塞二钠致双侧小腿罕见硬皮样皮肤1例分析[J]. 中国药物警戒, 2023, 20(11): 1293-1295. |
[4] | 孙静, 赵荣华, 包蕾, 郭姗姗, 耿子涵, 李舒冉, 徐英莉, 崔晓兰. 疏风解毒胶囊联合左氧氟沙星治疗多重耐药铜绿假单胞菌感染性小鼠肺炎的作用研究[J]. 中国药物警戒, 2023, 20(1): 52-56. |
[5] | 徐英莉, 庞博, 曹姗, 陈梦苹, 孙静, 赵荣华, 张敬升, 周利润, 王雅欣, 崔晓兰. 中药防治耐药铜绿假单胞菌肺炎感染机制研究进展[J]. 中国药物警戒, 2023, 20(1): 57-60. |
[6] | 杨少杰, 夏玉朝, 任鹏飞, 王杰, 陈裕. 153例利奈唑胺致耐药结核病患者神经系统不良反应分析[J]. 中国药物警戒, 2022, 19(11): 1246-1249. |
[7] | 任昭, 刘佳, 王玉敏, 王月, 谢清. 1例头孢他啶/阿维巴坦治疗碳青霉烯耐药肺炎克雷伯菌血流感染患者的药学监护[J]. 中国药物警戒, 2022, 19(11): 1258-1261. |
[8] | 李原华, 葛斐林, 陈容娟, 柏兆方, 李乐, 赵靖, 刘妍, 刘文龙, 肖小河. 核苷(酸)类似物耐药机制及突变位点研究进展[J]. 中国药物警戒, 2021, 18(8): 795-799. |
[9] | 曹洪丽, 于盼盼, 杨静, 席家宁. 吉非替尼联合白蛋白结合型紫杉醇对NSCLC患者生活质量和生存期的影响[J]. 中国药物警戒, 2021, 18(6): 562-565. |
[10] | 张丛惠, 崔小康, 彭婷婷, 鹿岩, 郭琳琳, 刘健. 奥希替尼治疗EGFR突变的晚期非小细胞肺癌疗效与安全性的Meta分析[J]. 中国药物警戒, 2021, 18(2): 178-183. |
[11] | 张秀敏, 蔡晶. 老年肺癌化疗患者肾功能损伤加重的用药分析[J]. 中国药物警戒, 2020, 17(8): 491-495. |
[12] | 薛雁鸿, 王来成, 胡丽丽,*, 杨波. 奈达铂或顺铂联合吉西他滨治疗中晚期NSCLC的临床效果及其安全性评价[J]. 中国药物警戒, 2018, 15(3): 136-139. |
[13] | 张敬伟, 段冬梅, 袁小笋, 孙君重, 任中海* . 沙利度胺联合化疗治疗老年晚期非小细胞肺癌的临床观察[J]. 中国药物警戒, 2017, 14(8): 460-463. |
[14] | 桂红1, 孟凡祥2, 洪燕英1, 高翔1, 崔煦然1, 丁军颖1, 刘清泉1*, *. 肺炎克雷伯菌临床分布及耐药特性比较和KPC基因表达分析[J]. 中国药物警戒, 2017, 14(4): 205-208. |
[15] | 叶云. 氟喹诺酮类抗菌药使用频度与常见细菌耐药率的相关研究[J]. 中国药物警戒, 2015, 12(7): 424-427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||