[1] The Lancet.2021: the beginning of a new era of immunisations?[J]. Lancet, 2021, 397(10284): 1519. [2] GUZMAN J, O'CONNELL E, KIKULE K, et al. The WHO Global Benchmarking Tool: a game changer for strengthening national regulatory capacity[J]. BMJ Glob Health, 2020, 5(8): e003181. [3] LIU ZK, MENG RG, YANG Y, et al.Active vaccine safety surveillance: global trends and challenges in China[J]. Health Data Science, 2021(1): 159-168. [4] CAI T, YANG Y, WANG YL, et al.Review and analysis of active post-marketing surveillance modes for vaccine safety[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2017, 14(8): 464-469. [5] MESFIN YM, CHENG A, LAWRIE J, et al.Use of routinely collected electronic healthcare data for postlicensure vaccine safety signal detection: a systematic review[J]. BMJ Glob Health, 2019, 4(4): e001065. [6] XU L, LI N, ZHANG L, et al. Lack of association between febrile seizures and vaccines containing diphtheria, tetanus,acellular pertussis in Chinese children[J/OL]. Expert Opin Drug Ssf. (2022-08-25)[2022-12-01]. https://pubmed. ncbi.nlm.nin.gov/35986238/. [7] SUN YX, ZHANG L, LI N, et al.No association between enterovirus 71 (EV71) vaccination and risk of febrile seizures: a population-based near real-time surveillance study[J]. Expert Rev Vaccines, 2022, 21(1): 125-134. [8] XU L, LI N, ZHANG L, et al.Febrile seizures and measles-containing vaccines in China: a self-controlled case series study[J]. Vaccines (Basel), 2021, 9(10): 1073. [9] BAKER MA, LIEU TA, LI L, et al.A vaccine study design selection framework for the postlicensure rapid immunization safety monitoring program[J]. Am J Epidemiol, 2015, 181(8): 608-618. [10] FINE PE, CHEN RT.Confounding in studies of adverse reactions to vaccines[J]. Am J Epidemiol, 1992, 136(2): 121-135. [11] CRAWFORD NW, CLOTHIER H, HODGSON K, et al.Active surveillance for adverse events following immunization[J]. Expert Rev Vaccines, 2014, 13(2): 265-276. [12] WHITAKER HJ, FARRINGTON CP, SPIESSENS B, et al.Tutorial in biostatistics: the self-controlled case series method[J]. Stat Med, 2006, 25(10): 1768-1797. [13] PETERSEN I, DOUGLAS I, WHITAKER H.Self controlled case series methods: an alternative to standard epidemiological study designs[J]. BMJ, 2016, 354: i4515. [14] WHITAKER HJ, GHEBREMICHAEL-WELDESELASSIE Y, DOUGLAS IJ, et al.Investigating the assumptions of the self-controlled case series method[J]. Stat Med, 2018, 37(4): 643-658. [15] WHITAKER HJ, STEER CD, FARRINGTON CP.Self-controlled case series studies: Just how rare does a rare non-recurrent outcome need to be[J]. Biom J, 2018, 60(6): 1110-1120. [16] FARRINGTON P, WHITAKER HJ, GHEBREMICHAEL-WELDESELASSIE Y.Self-controlled case series studies: a modelling guide with R[M]. Chapman and Hall: CRC Press, 2018. [17] FARRINGTON CP, WHITAKER HJ, HOCINE MN.Case series analysis for censored, perturbed, or curtailed post-event exposures[J]. Biostatistics, 2009, 10(1): 3-16. [18] SIMPSON SE.A positive event dependence model for self-controlled case series with applications in postmarketing surveillance[J]. Biometrics, 2013, 69(1): 128-136. [19] NIE XL, XU L, BAI Y, et al.Self-controlled case series design in vaccine safety: a systematic review[J]. Expert Rev Vaccines, 2022, 21(3): 313-324. [20] BOTTON J, JABAGI MJ, BERTRAND M, et al.Risk for myocardial infarction, stroke, and pulmonary embolism following COVID-19 vaccines in adults younger than 75 years in France[J]. Ann Intern Med, 2022, 175(9): 1250-1257. [21] YOKOSE C, MCCORMICK N, CHEN C, et al.Risk of gout flares after vaccination: a prospective case cross-over study[J]. Ann Rheum Dis, 2019, 78(11): 1601-1604. [22] FARRINGTON CP.Control without separate controls: evaluation of vaccine safety using case-only methods[J]. Vaccine, 2004, 22(15-16): 2064-2070. [23] BRAEYE T, HENS N.Optimising the case-crossover design for use in shared exposure settings[J]. Epidemiol Infect, 2020,148: e151. [24] GASPARRINI A.The case time series design[J]. Epidemiology, 2021, 32(6): 829-837. [25] KUHNERT R, HECKER H, POETHKO-MULLER C, et al.A modified self-controlled case series method to examine association between multidose vaccinations and death[J]. Stat Med, 2011, 30(6): 666-677. [26] GLANZ JM, MCCLURE DL, XU S, et al.Four different study designs to evaluate vaccine safety were equally validated with contrasting limitations[J]. J Clin Epidemiol, 2006, 59(8):808-818. [27] FRANCE EK, GLANZ J, XU S, et al.Risk of immune thrombocytopenic purpura after measles-mumps-rubella immunization in children[J]. Pediatrics, 2008, 121(3): e687-692. [28] YIH WK, LIEU TA, KULLDORFF M, et al.Intussusception risk after rotavirus vaccination in U.S. infants[J]. N Engl J Med, 2014, 370(6): 503-512. [29] LI L, KULLDORFF M, RUSSEK-COHEN E, et al.Quantifying the impact of time-varying baseline risk adjustment in the self-controlled risk interval design[J]. Pharmacoepidemiol Drug Saf, 2015, 24(12): 1304-1312. [30] AKPANDAK I, MILLER DC, SUN Y, et al.Assessment of herpes zoster risk among recipients of COVID-19 vaccine[J]. JAMA Netw Open, 2022, 5(11): e2242240. |