Chinese Journal of Pharmacovigilance ›› 2018, Vol. 15 ›› Issue (9): 555-559.
Previous Articles Next Articles
XU Xianxing1, YANG Jingwen2*
Received:
2018-11-02
Revised:
2018-11-02
Online:
2018-09-20
Published:
2018-11-02
CLC Number:
XU Xianxing, YANG Jingwen. Clinical Application and Potential Risk of CAR-T[J]. Chinese Journal of Pharmacovigilance, 2018, 15(9): 555-559.
Add to citation manager EndNote|Ris|BibTeX
[1] FDA.FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma [EB/OL]. (2017-10-18)[2018-08-31].https://www.fda.gov/NewsEvents/Newsroom/PressAnno-uncements/ucm581216.htm [2] Ribatti D.The concept of immune surveillance against tumors. The first theories[J]. Oncotarget, 2017, 8(4):7175-7180. [3] McLaughlin P., Grillo-Lopez A J, Link B K, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program[J]. J Clin Oncol,1998,16(8):2825-2833. [4] Weiner L M, Surana R, Wang S.Monoclonal antibodies: Versatile platforms for cancer immunotherapy[J]. Nat Rev Immunol,2010,10(5):317-327. [5] Pegram H J, Lee J C, Hayman E G, et al.Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning[J]. Blood, 2012, 119(18):4133-4141. [6] Chmielewski M, Hombach A A, Abken H.Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma[J]. Immunol Rev,2014 257(1):83-90. [7] Chmielewski M, Abken H.TRUCKs: the fourth generation of CARs[J]. Expert Opin Biol Ther,2015,15(8):1145-1154. [8] Dotti G, Gottschalk S, Savoldo B, et al.Design and development of therapies using chimeric antigen receptor-expressing T cells[J]. Immunol Rev,2014, 257(1):107-126. [9] Kochenderfer J N, Wilson W H, Janik J E, et al.Eradication of lineage cells and regression in with autologous T cells engineered to recognize CD19[J]. Blood, 2010,116(20):4099-4102. [10] Kochenderfer J N, Yu Z, Frasheri D, et al.Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells[J]. Blood,2010,116(19):3875-3886. [11] 夏莉,王月英. 嵌合抗原受体 T 细胞疗法及其在血液肿瘤免疫治疗中的应用[J]. 上海交通大学学报(医学版),2017,37(6): 823-829. [12] Grupp S A, Kalos M, Barrett D, et al.Chimeric antigen receptor-modifed T cells for acute lymphoid leukemia[J]. N Engl J Med,2013,368(16): 1509-1518. [13] Maude S L, Frey N, Shaw P A, et al.Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med,2014,371(16): 1507-1517. [14] Haso W, Lee D W, Shah N N, et al.Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia[J]. Blood,2013,121(7): 1165-1174. [15] Giordano Attianese G M, Marin V, Hoyos V, et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by antiCD23 chimeric antigen receptor[J]. Blood,2011,117(18): 4736-4745. [16] Carpenter R O, Evbuomwan M O, Pittaluga S, et al.B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma[J]. Clin Cancer Res,2013,19(8):2048-2060. [17] Kenderian S S, Ruella M, Shestova O, et al.CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia[J]. Leukemia,2015,29(8): 1637-1647. [18] Mardiros A, Dos Santos C, McDonald T, et al. T cells expressing CD123-specifc chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia[J]. Blood,2013,122(18): 3138-3148. [19] Mihara K, Bhattacharyya J, Kitanaka A, et al.T-cell immunother-apy with a chimeric receptor against CD38 is effective in eliminating myeloma cells[J]. Leukemia,2012,26(2): 365-367. [20] Crossland D L,Denning W L,Ang S,et al.Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models[J]. Oncogene,2018, 37(27):3686-3697. [21] 葛玉凤,韩东晖,吴介恒,等. CAR-T 细胞治疗用于实体瘤的研究进展[J]. 转化医学电子杂志,2017,4(10): 50-55. [22] Freeman G J,Long A J,Iwai Y,et al.Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J].J Exp Med,2000,192(7):1027-1034. [23] 郑敏,张岚. CAR-T抗肿瘤研究的现状及展望[J]. 山东大学学报(医学版),2016, 54(11):1-6. [24] Moon E K, Wang L C, Dolfi D V, et al.Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors[J]. Clin Cancer Res,2014,20(16): 4262-4273. [25] Beavis P A, Slaney C Y, Kershaw M H, et al.Reprogramming the tumor microenvironment to enhance adoptive cellular therapy[J]. Semin Immunol,2016, 28(1):64-72. [26] Sun M, Shi H, Liu C, et al.Construction and evaluation of a novel humanized HER2-specific chimeric receptor[J]. Breast Cancer Res,2014,16(3):R61. [27] Sampson J H, Choi B D, Sanchez-Perez L, et al.EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss[J]. Clin Cancer Res,2014,20(4): 972-984. [28] Zuccolotto G, Fracasso G, Merlo A, et al.PSMA-specific CAR-engineered T cells eradicate disseminated prostate cancer in preclinical models[J]. PloS One,2014, 9(10): e109427. [29] Duong C P, Westwood J A, Berry L J, et al.Enhancing the specificity of T-cell cultures for adoptive immunotherapy of cancer[J].Immunotherapy,2011,3(1):33-48. [30] Hegde M, Corder A, Chow K K, et al.Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma[J]. Mol Ther,2013,21(11): 2087-2101. [31] Grada Z, Hegde M, Byrd T, et al.TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy[J]. Mol Ther Nucleic Acids,2013,2(7): e105. [32] Hegde M, Mukherjee M, Grada Z, et al.Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape[J]. J Clin Invest, 2016, 126(8):3036-3052. [33] Kulemzin S V, Kuznetsova V V, Mamonkin M, et al.CAR T-Cell Therapy: Balance of Efficacy and Safety[J]. Mol Biol (Mosk),2017,51(2): 274-287. [34] Hinrichs C S, Borman Z A, Gattinoni L, et al.Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy[J]. Blood,2011,117(3):808-814. [35] Wang X, Popplewell L L, Wagner J R, et al.Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL[J]. Blood,2016,127(24):2980-2990. [36] Xu Y, Zhang M, Ramos C A, et al.Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15[J]. Blood,2014,123(24):3750-3759. [37] Gargett T, Brown M P.Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2[J]. Cytotherapy,2015,17(4):487-495. [38] Craddock J A, Lu A, Bear A, et al.Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b[J]. Immunother,2010,33(8):780-788. [39] Kershaw M H, Westwood J A, Darcy P K.Gene-engineered T cells for cancer therapy[J]. Nat Rev Cancer,2013,13(8): 525-541. [40] Hinrichs C S, Restifo N P.Reassessing target antigens for adoptive T-cell therapy[J]. Nat Biotechnol,2013,31(11): 999-1008. [41] Norelli M, Casucci M, Bonini C, et al.Clinical pharmacology of CAR-T cells: Linking cellular pharmacodynamics to pharmacok0inetics and antitumor effects[J]. Biochim Biophys Acta,2016,1865(1): 90-100. [42] Pule M A, Savoldo B, Myers G D, et al.Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma[J]. Nat Med,2008,14(11): 1264-1270. [43] Maude S L, Frey N, Shaw P A, et al.Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med,2014,371(16):1507-1517. [44] Hoyos V, Savoldo B, Quintarelli C, et al.Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety[J]. Leukemia,2010,24(6): 1160-1170. [45] Pegram H J, Lee J C, Hayman E G, et al.Tumor targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning[J]. Blood,2012,119(18): 4133-4141. [46] Markley J C, Sadelain M.IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cellmediated rejection of systemic lymphoma in immunodeficient mice[J]. Blood,2010,115(17): 3508-3519. [47] Pagel J M,West H. Chimeric Antigen Receptor (CAR) T-Cell Therapy[J]. JAMA Oncol,2017, 3(11):1595. [48] Casucci M, Hawkins R E, Dotti G, et al.Overcoming the toxicity hurdles of genetically targeted T cells[J]. Cancer Immunol. Immu-nother,2015, 64(1):123-130. [49] Dotti G, Gottschalk S, Savoldo B, et al.Design and development of therapies using chimeric antigen receptor-expressing T cells[J]. Immunol Rev,2014,257(1): 107-126. [50] Morgan R A, Yang J C, Kitano M, et al.Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2[J]. Mol Ther,2010,18(4): 843-851. [51] Lamers C H, Sleijfer S, van Steenbergen S, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity[J]. Mol Ther,2013,21(4): 904-912. [52] Lee D W, Kochenderfer J N, Stetler-Stevenson M, et al.T cells expressing CD19 chimeric antigen receptors for acute lymphobla-stic leukaemia in children and young adults: Aphase 1 dose-escalation trial[J]. Lancet,2015,385(9967): 517-528. [53] Minagawa K, Zhou X, Mineishi S, et al.Seatbelts in CAR therapy: How safe are CARS?[J]. Pharmaceuticals (Basel),2015,8(2): 230-249. [54] Berger C, Sommermeyer D, Hudecek M, et al.Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells[J]. Cancer Immunol Res,2015,3(2): 206-216. [55] Maus M V, Grupp S A, Porter D L, et al.Antibody-modified T cells: CARs take the front seat for hematologic malignancies[J]. Blood,2014,123(17): 2625-2635. [56] Davila M L, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia[J]. Sci Transl Med,2014,6(224): 224ra25. [57] Barrett D M, Teachey D T, Grupp S A.Toxicity management for patients receiving novel T-cell engaging therapies[J]. Curr Opin Pediatr,2014, 26(1): 43-49. [58] Mei H, Jiang H, Wu Y,et al.Neurological toxicities and coagulation disorders in the cytokine release syndrome during CAR-T therapy[J]. Br J Haematol,2018,181(5):689-692. [59] Hu Y, Sun J, Wu Z, et al.Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy[J]. J Hematol Oncol, 2016,9(1):70. [60] 李军,陈雄波,董坚. CAR-T细胞治疗在血液肿瘤中的临床研究[J]. 生物产业技术, 2017,5(9):27-32. [61] thestreet. Juno Therapeutics CAR-T Study Halts Following Additional Patient Deaths[EB/OL]. (2016-11-23)[2018-08-31].https://www.thestreet.com/story/13903738/1/juno-therapeutics-car-t-study-halts-following-another-additional-patient-death.html. [62] Porter D L, Hwang W T, Frey N V, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J]. Sci Transl Med, 2015, 7(303): 303ra139. [63] 张艺瀚. CAR-T 技术的研究发展及现状[J]. 世界最新医学信息文摘, 2018,18(14):31-32. [64] CFDA. 总局关于发布细胞治疗产品研究与评价技术指导原则的通告(2017年第216号)[EB/OL].(2017-12-22)[ 2018-08-31]. http://samr.cfda.gov.cn/WS01/CL0087/220082.html. [65] 高建超,高晨燕.嵌合抗原受体基因修饰T细胞早期临床试验的探讨[J].中国药物警戒,2017,14(10):611-621. |
[1] | REN Yuke, QU Zhe, LAI Zixuan, ZHANG Di, ZHAO Yongtian, YANG Yanwei, LI Shuangxing, HUO Guitao, ZHOU Xiaobing, LIN Zhi, GENG Xingchao. Pharmacodynamic Evaluation of CAR-T Cell Products Based on Deep Learning Convolutional Neural Network Recognition [J]. Chinese Journal of Pharmacovigilance, 2025, 22(7): 742-748. |
[2] | REN Yuke, JIANG Hua, LI Lulu, LI Shuangxing, HUO Guitao, YANG Yanwei, ZHANG Di, HUANG Ying, GENG Xingchao, LIN Zhi, QU Zhe. Research Advances in the Pathogenesis of Cytokine Release Syndrome Induced by CAR-T Cell Therapy [J]. Chinese Journal of Pharmacovigilance, 2025, 22(7): 735-741. |
[3] | SHEN Lu, LIU Cuili, WANG Yi, HAO Mingqiang, WANG Yali, ZHU Huijuan, WU Chen, YANG Yang. Precision Pharmacovigilance for Cell and Gene Therapy Products [J]. Chinese Journal of Pharmacovigilance, 2025, 22(6): 633-639. |
[4] | LIU Chang, SHI Chang, YIN Jiye. Nonclinical immunotoxicity evaluation of CAR-T cell products [J]. Chinese Journal of Pharmacovigilance, 2024, 21(9): 1051-1055. |
[5] | FU Yingshuang, LI Shuangxing, JIANG Hua, QU Zhe, HUO Guitao, YANG Yanwei, ZHANG Di, HUANG Ying, LI Bo, LIN Zhi. Exploratory study of cytokine release syndrome in vitro [J]. Chinese Journal of Pharmacovigilance, 2024, 21(6): 625-631. |
[6] | HUANG Ying, WEN Hairuo, HOU Tiantian, HUO Yan, WANG Sanlong, GENG Xingchao. Cloning ability of CAR-T cells in soft agar and tumorigenicity in vitro [J]. Chinese Journal of Pharmacovigilance, 2022, 19(8): 836-838. |
[7] | WEN Hairuo, HUANG Ying, QU Zhe, JIANG Hua, LAN Jie, LOU Xiaoyan, GENG Xingchao, WANG Sanlong, YU Lei. Pre-clinical toxicity evaluation of CAR-T cells for the treatment of non-Hodgkin's lymphoma [J]. Chinese Journal of Pharmacovigilance, 2022, 19(8): 828-835. |
[8] | HOU Tiantian, LI Xuejiao, SUN Lei, QIN Chao, ZHAO Jing, HUO Yan, WANG Yu, GENG Xingchao, HUANG Ying. Biodistribution study of CAR-T cells in non-bearing-tumor and tumor-bearing severe immunodeficient mice [J]. Chinese Journal of Pharmacovigilance, 2022, 19(8): 823-827. |
[9] | WEN Hairuo, HUANG Ying, QU Zhe, QIN Chao, WANG Sanlong, LOU Xiaoyan, GENG Xingchao, YU Lei. In vivo pharmacodynamics of two CD19-targeting CAR-T cells immunotherapy [J]. Chinese Journal of Pharmacovigilance, 2022, 19(8): 817-822. |
[10] | HUANG Ying, HOU Tiantian, QIN Chao, HUO Yan, WANG Sanlong, WEN Hairuo, GENG Xingchao. Nonclinical research on CAR-T cell products: main concerns and key issues [J]. Chinese Journal of Pharmacovigilance, 2022, 19(8): 813-816. |
[11] | BAO Baiyi, TANG Guanguang, WANG Xingwei, TANG Shubing, LI Xin, HAN Feng. Research Progress on New Anti-tumor Immunotherapy Drugs [J]. Chinese Journal of Pharmacovigilance, 2021, 18(8): 719-724. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||