[1] CATANI M, DE LUCA C, MEDEIROS GA J, et al.Oligonucleotides: Current Trends and Innovative Applications in the Synthesis, Characterization, and Purification[J]. Biotechnology Journal, 2020, 15(8): e1900226. [2] GOYON A, YEHL P, ZHANG K.Characterization of Therapeutic Oligonucleotides by Liquid Chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 182(6): 113105. [3] TALAP J, ZHAO J, SHEN M, et al.Recent Advances in Therapeutic Nucleic Acids and Their Analytical Methods[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 206(1): 114368. [4] SANTOS I C, BRODBELT J S.Recent Developments in the Characterization of Nucleic Acids by Liquid Chromatography, Capillary Electrophoresis, Ion Mobility, and Mass Spectrometry (2010-2020)[J]. Journal of Separation Science, 2020, 44(1): 340-372. [5] RAMASAMY T, RUTTALA HB, MUNUSAMY S, et al.Nano Drug Delivery Systems for Antisense Oligonucleotides (ASO) Therapeutics[J]. Journal of Controlled Release, 2022, 352(12): 861-878. [6] YAMADA Y.Nucleic Acid Drugs-Current Status, Issues, and Expectations for Exosomes[J]. Cancers, 2021, 13(19): 5002. [7] ALSHAER W, ZUREIGAT H, AL KARAKI A, et al.siRNA: Mechanism of Action, Challenges, and Therapeutic Approaches[J]. European Journal of Pharmacology, 2021, 905(16): 174178. [8] WANG X, RAMAT A, SIMONELIG M, et al.Emerging Roles and Functional Mechanisms of PIWI-Interacting RNAs[J]. Nature Reviews Molecular Cell Biology, 2022, 24(2): 123-141. [9] DUME B, LICARETE E, BANCIU M.Advancing Cancer Treatments: the Role of Oligonucleotide-Based Therapies in Driving Progress[J]. Molecular Therapy: Nucleic Acids, 2024, 35(3): 102256. [10] GANJU A, KHAN S, HAFEEZ B B, et al.miRNA Nanotherapeutics for Cancer[J]. Drug Discovery Today, 2017, 22(2): 424-432. [11] ZHANG S, CHENG Z, WANG Y, et al.The Risks of miRNA Therapeutics: in a Drug Target Perspective[J]. Drug Design, Development and Therapy, 2021, 15(1): 721-733. [12] FDA. IND Submissions for Individualized Antisense Oligonucleotide Drug Products for Severely Debilitating or Life-Threatening Diseases: Chemistry, Manufacturing,Controls Recommendations[EB/OL]. (2021-07-12)[2024-09-09]. https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs. [13] Pharmaceuticals and Medical Devices Agency. Points to Consider for Quality Assurance and Evaluation of Oligonucleotide Therapeutics[EB/OL]. (2018-09-27)[2024-09-09]. https://www.pmda.go.jp/files/000263163.pdf. [14] MUSLEHIDDINOGLU J, SIMLER R, HILL ML, et al.Technical Considerations for Use of Oligonucleotide Solution API[J]. Nucleic Acid Therapeutics, 2020, 30(4): 189-197. [15] KIESMAN WF, MCPHERSON AK, DIORAZIO LJ, et al.Perspectives on the Designation of Oligonucleotide Starting Materials[J]. Nucleic Acid Therapeutics, 2021, 31(2): 93-113. [16] BORTHS CJ, BURR T, FIGUCCIA A, et al.Nitrosamine Risk Assessments in Oligonucleotides[J]. Organic Process Research & Development, 2022, 27(10): 1693-1702. [17] FILLON YA, AKHTAR N, ANDREWS BI, et al.Determination of Purge Factors for Use in Oligonucleotide Control Strategies[J]. Organic Process Research & Development, 2022, 26(4): 1130-1144. [18] WETTER C, CHORLEY C, CURTIS C, et al.Solution Oligonucleotide APIs: Regulatory Considerations[J]. Therapeutic Innovation & Regulatory Science, 2022, 56(3): 386-393. [19] ALTEVOGT D, CEDILLO I, CURTIS C, et al.Platform Strategies for Synthetic Oligonucleotide Drug Substances[J]. Organic Process Research & Development, 2023, 27(12): 2211-2222. [20] DECOLLIBUS DP, SEARCY J, TIVESTEN A, et al.Considerations for the Terminal Sterilization of Oligonucleotide Drug Products[J]. Nucleic Acid Therapeutics, 2023, 33(3): 159-177. [21] European Medicines Agency. Guideline on the Development and Manufacture of Oligonucleotides[EB/OL]. (2024-07-22) [2024-09-09]. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-development-manufacture-oligonucleotides_en.pdf. [22] CHEN T, TANG S, FU Y, et al.Analytical Techniques for Characterizing Diastereomers of Phosphorothioated Oligonucleotides[J]. Journal of Chromatography A, 2022, 1678: 463349. [23] ARRICO L, STOLFI C, MARAFINI I, et al.Inhomogeneous Diastereomeric Composition of Mongersen Antisense Phosphorothioate Oligonucleotide Preparations and Related Pharmacological Activity Impairment[J]. Nucleic Acid Therapeutics, 2022, 32(4): 312-320. [24] HAMMOND SM, AARTSMA-RUS A, ALVES S, et al.Delivery of Oligonucleotide-Based Therapeutics: Challenges and Opportunities[J]. EMBO Molecular Medicine, 2021, 13(4): e13243. [25] JULIANO R L.The Delivery of Therapeutic Oligonucleotides[J]. Nucleic Acids Research, 2016, 44(14): 6518-6548. [26] ALHARBI K S, JAVED SHAIKH M A, AFZAL O, et al. Oligonucleotides: a Novel Area of Interest for Drug Delivery in Neurodegenerative Diseases[J]. Journal of Drug Delivery Science and Technology, 2022, 77(11): 103849. [27] CAPALDI D, TEASDALE A, HENRY S, et al.Impurities in Oligonucleotide Drug Substances and Drug Products[J]. Nucleic Acid Therapeutics, 2017, 27(6): 309-322. [28] FORNSTEDT T, ENMARK M.Separation of Therapeutic Oligonucleotides Using Ion-Pair Reversed-Phase Chromatography Based on Fundamental Separation Science[J]. Journal of Chromatography Open, 2023, 3(1): 100079. [29] ENMARK M, HARUN S, SAMUELSSON J, et al.Selectivity Limits of and Opportunities for Ion Pair Chromatographic Separation of Oligonucleotides[J]. Journal of Chromatography A, 2021, 1651(17): 463269. [30] KADLECOVÁ Z, KALÍKOVÁ K, TESAŘOVÁ E, et al. Phosphorothioate Oligonucleotides Separation in Ion-Pairing Reversed-Phase Liquid Chromatography: Effect of Temperature[J]. Journal of Chromatography A, 2022, 1681(21): 463473. [31] KADLECOVÁ Z, KALÍKOVÁ K, TESAŘOVÁ E, et al. Phosphorothioate Oligonucleotides Separation in Ion-Pairing Reversed-Phase Liquid Chromatography: Effect of Ion-Pairing System[J]. Journal of Chromatography A, 2022, 1676(16): 463201. [32] BIBA M, JIANG E, MAO B, et al.Factors Influencing the Separation of Oligonucleotides Using Reversed-Phase/Ion-Exchange Mixed-Mode High Performance Liquid Chromatography Columns[J]. Journal of Chromatography A, 2013, 1304(34): 69-77. [33] KAZARIAN AA, BARNHART W, LONG J, et al.Purification of N-Acetylgalactosamine-Modified-Oligonucleotides Using Orthogonal Anion-Exchange and Mixed-Mode Chromatography Approaches[J]. Journal of Chromatography A, 2022, 1661(1): 462679. [34] ROUSSIS S G, RENTEL C.Separation of Phosphorothioate Oligonucleotide Impurities by WAX HPLC under High Organic Content Elution Conditions[J]. Analytical Biochemistry, 2022, 659(24): 114956. [35] TOGAWA H, OKUBO T, NONAKA Y, et al.Retention Behavior of Short Double-Stranded Oligonucleotide and its Potential Impurities by Anion-Exchange Chromatography under Non-Denaturing Conditions[J]. Journal of Chromatography A, 2023, 1691(5): 463808. [36] TOGAWA H, OKUBO T, HORIUCHI K, et al.Separation of the Diastereomers of Phosphorothioated siRNAs by Anion-Exchange Chromatography under Non-Denaturing Conditions[J]. Journal of Chromatography A, 2024, 1721(9): 464847. [37] LOBUE P A, JORA M, ADDEPALLI B, et al.Oligonucleotide Analysis by Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry in the Absence of Ion-Pair Reagents[J]. Journal of Chromatography A, 2019, 1595(13): 39-48. [38] GILAR M, KOSHEL BM, BIRDSALL RE.Ion-Pair Reversed-Phase and Hydrophilic Interaction Chromatography Methods for Analysis of Phosphorothioate Oligonucleotides[J]. Journal of Chromatography A, 2023, 1712(9): 464475. [39] STOLL D, SYLVESTER M, MESTON D, et al.Development of Multiple Heartcutting Two-Dimensional Liquid Chromatography with Ion-Pairing Reversed-Phase Separations in Both Dimensions for Analysis of Impurities in Therapeutic Oligonucleotides[J]. Journal of Chromatography A, 2024, 1714(2): 464574. [40] VANHINSBERGH C, HOOK EC, OXBY N, et al.Optimization of Orthogonal Separations for the Analysis of Oligonucleotides Using 2D-LC[J]. Journal of Chromatography B, 2023, 1227(14): 123812. [41] LI F, KNAPPE C, CARSTENSEN N, et al.Two-Dimensional Sequential Selective Comprehensive Chiral×Reversed-Phase Liquid Chromatography of Synthetic Phosphorothioate Oligonucleotide Diastereomers[J]. Journal of Chromatography A, 2024, 1730(18): 465076. [42] YAMASHITA T, NAKAMOTO K, HITAOKA S, et al.Influence of Oligonucleotides Structures for Separation of Diastereomers by Capillary Electrophoresis Method Using Polyvinylpyrrolidone 1,300,000[J]. Journal of Chromatography A, 2024, 1725(13): 464945. [43] WEI B, GOYON A, ZHANG K.Analysis of Therapeutic Nucleic Acids by Capillary Electrophoresis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 219(13): 114928. [44] GAWLIG C, HANCI G, RÜHL M. Quantification of Oligonucleotides Using Tandem Mass Spectrometry with Isobaric Internal Standards[J]. International Journal of Molecular Sciences, 2023, 24(19): 14691. [45] RENTEL C, GAUS H, BRADLEY K, et al.Assay, Purity, and Impurity Profile of Phosphorothioate Oligonucleotide Therapeutics by Ion Pair-HPLC-MS[J]. Nucleic Acid Therapeutics, 2022, 32(3): 206-220. [46] MURRAY MT, WETMORE SD.Unlocking Precision in Aptamer Engineering: a Case Study of the Thrombin Binding Aptamer Illustrates Why Modification Size, Quantity, and Position Matter[J]. Nucleic Acids Research, 2024, 52(18): 10823-10835. [47] GILAR M, REDSTONE S, GOMES A.Impact of Mobile and Stationary Phases on siRNA Duplex Stability in Liquid Chromatography[J]. Journal of Chromatography A, 2024, 1733(21): 465285. [48] WITTWER CT, HEMMERT AC, KENT JO, et al.DNA Melting Analysis[J]. Molecular Aspects of Medicine, 2024, 97(3): 101268. [49] CAPPANNINI A, MOSCA K, MUKHERJEE S, et al.NACDDB: Nucleic Acid Circular Dichroism Database[J]. Nucleic Acids Research, 2023, 51(D1): D226-D231. [50] BECETTE OB, TRAN A, JONES JW, et al.Structural Fingerprinting of siRNA Therapeutics by Solution NMR Spectroscopy[J]. Nucleic Acid Therapeutics, 2022, 32(4): 267-279. [51] AJAYI OO. a Review of Mass Spectrometry as an Important Analytical Tool for Structural Elucidation of Biological Products[J]. Journal of Progress in Engineering and Physical Science, 2024, 3(1): 23-31. [52] MADSEN M, ROUSSIS S, SCHNIEPP E, et al.Assay Determination by Mass Spectrometry for Oligonucleotide Therapeutics[J]. Rapid Communications in Mass Spectrometry, 2019, 33(22): 1774-1780. |