[1] LIN YX, HUANG YW, XIONG JH, et al.Research progress in drugs for treating gout[J]. Chinese Journal of Rural Medicine and Pharmacy(中国乡村医药), 2021, 28(24): 87-88. [2] Chinese Medical Association Endocrinology Branch. Chinese guidelines for the diagnosis and treatment of hyperuricemia and gout (2019)[J]. Chinese Journal of Endocrinology and Metabolism(中华内分泌代谢杂志), 2020, 36(1): 1-13. [3] NI Q.Guideline for diagnosis and treatment of hyperuricemia and gout (2021-01-20)[J]. World Chinese Medicine(世界中医药), 2021, 16(2): 183-189. [4] FU HT, ZHANG M, CI XY, et al.Research progress of therapeutic agents for gout and hyperuricemia[J]. Drug Evaluation Research(药物评价研究), 2021, 44(8): 1811-1816. [5] FANG NY, LYU LW, LYU XX, et al.China multi-disciplinary expert consensus on diagnosis and treatment of hyperuricemia and related diseases(2023 edition)[J]. Chinese Journal of Practical Internal Medicine(中国实用内科杂志), 2023, 43(6): 461-480. [6] ZHANG XW.Several concerned issues in the treatment of gouty arthritis[J]. Journal of Peking University(Health Sciences)(北京大学学报医学版), 2021, 53(6): 1017-1019. [7] CDR-ADR, NMPA. Febuxostat: updated advice for the treatment of patients with a history of major cardiovascular disease[EB/OL]. (2023-06-21)[2023-11-02]. https://www.cdr-adr.org.cn/drug_1/aqjs_1/drug_aqjs_jjkx/202306/t20230625_50246.html. [8] CDR-ADR, NMPA. Adverse drug reaction information notification - alert to the risk of liver damage caused by benzbromarone[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2016, 13(1): 59-60. [9] CICERO AFG, FOGACCI F, KUWABARA M, et al.Therapeutic strategies for the treatment of chronic hyperuricemia: an evidence-based update[J]. Medicina(Kaunas), 2021, 57(1): 58. [10] FURUHASHI M.New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity[J]. Am J Physiol Endocrinol Metab, 2020, 319(5): E827-E834. [11] LI WY, ZHAI N, JU XL, et al.Research progress of febuxostat derivatives as xanthine oxidase inhibitors[J]. Acta Pharmaceutica Sinica(药学学报), 2021, 56(12): 3401-3413. [12] ZHAO Y, ZHANG QH, FENG MS, et al.Advances in the research of xanthine oxidase inhibitors for lowering urate[J]. Progress in Pharmaceutical Sciences(药学进展), 2009, 33(2): 55-61. [13] KUMAR R, JOSHI G, KLER H, et al.Toward an understanding of structural insights of xanthine and aldehyde oxidases: an overview of their inhibitors and role in various diseases[J]. Med Res Rev, 2018, 38(4): 1073-1125. [14] KIBRIZ İE, SAÇMACI M, YILDIRIM İ, et al. Xanthine oxidase inhibitory activity of new pyrrole carboxamide derivatives: in vitro and in silico studies[J]. Arch Pharm(Weinheim), 2018, 351(10): e1800165. [15] ZHANG B, DAI X, BAO Z, et al.Targeting the subpocket in xanthine oxidase: design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives[J]. Eur J Med Chem, 2019, 181: 111559. [16] YAGIZ G, NOMA SAA, ALTUNDAS A, et al.Synthesis, inhibition properties against xanthine oxidase and molecular docking studies of dimethyl N-benzyl-1H-1, 2, 3-triazole-4, 5-dicarboxylate and (N-benzyl-1H-1, 2, 3-triazole-4, 5-diyl) dimethanol derivatives[J]. Bioorganic Chemistry, 2021, 108: 104654. [17] ZHOU H, LI X, LI Y, et al.Synthesis and bioevaluation of 1-phenylimidazole-4-carboxylic acid derivatives as novel xanthine oxidoreductase inhibitors[J]. European Journal of Medicinal Chemistry, 2020, 186: 111883. [18] ZHANG T, TU S, ZHANG X, et al.Amide-based xanthine oxidase inhibitors bearing an N-(1-alkyl-3-cyano-1H-indol-5-yl) moiety: design, synthesis and structure-activity relationship investigation[J]. Bioorganic Chemistry, 2021, 117: 105417. [19] TU S, ZHANG T J, ZHANG Y, et al.N-(3-cyano-1H-indol-5-yl) isonicotinamide and N-(3-cyano-1H-indol-5-yl)-1H-benzo [d] imidazole-5-carboxamide derivatives: Novel amide-based xanthine oxidase inhibitors[J]. Bioorganic Chemistry, 2021, 115: 105181. [20] ZHANG TJ, ZHANG X, XU EY, et al.A possible covalent xanthine oxidase inhibitor TS10: inhibition mechanism, metabolites identification and PDPK assessment[J]. Bioorg Chem, 2022, 128: 106064. [21] ZHANG T, ZHANG Z, ZHANG X, et al.Design, synthesis and biological evaluation of N-(4-alkoxy-3-(1H-tetrazol-1-yl) phenyl) heterocyclic aromatic amide derivatives as xanthine oxidase inhibitors[J]. Bioorganic Chemistry, 2022, 126: 105938. [22] LI SY, ZHANG TJ, WU QX, et al.Synthesis and biological evaluation of 5-benzyl-3-pyridyl-1H-1,2,4-triazole derivatives as xanthine oxidase inhibitors[J]. Med Chem, 2020, 16(1): 119-127. [23] SUN M, ZHAO J, MAO Q, et al.Synthesis and biological evaluation of 2-(4-alkoxy-3-cyano)phenylpyrimidine derivatives with 4-amino or 4-hydroxy as a pharmacophore element binding with xanthine oxidase active site[J]. Bioorg Med Chem, 2021, 38: 116117. [24] GAO J, ZHANG Z, ZHANG B, et al.Novel 3-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-1,2,4-oxadiazol-5(4H)-ones as promising xanthine oxidase inhibitors: Design, synthesis and biological evaluation[J]. Bioorg Chem, 2020, 95: 103564. [25] AGBADUA OG, KÚSZ N, BERKECZ R, et al. Oxidized resveratrol metabolites as potent antioxidants and xanthine oxidase inhibitors[J]. Antioxidants (Basel), 2022, 11(9): 1832. [26] CHEN JS, WANG MX, WANG MM, et al.Synthesis and biological evaluation of geniposide derivatives as inhibitors of hyperuricemia, inflammatory and fibrosis[J]. Eur J Med Chem, 2022, 237: 114379. [27] ZHAO J, MAO Q, LIN F, et al.Intramolecular hydrogen bond interruption and scaffold hopping of TMC-5 led to 2-(4-alkoxy-3-cyanophenyl)pyrimidine-4/5-carboxylic acids and 6-(4-alkoxy-3-cyanophenyl)-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-ones as potent pyrimidine-based xanthine oxidase inhibitors[J]. Eur J Med Chem, 2022, 229: 114086. [28] ERA B, DELOGU GL, PINTUS F, et al.Looking for new xanthine oxidase inhibitors: 3-Phenylcoumarins versus 2-phenylbenzofurans[J]. Int J Biol Macromol, 2020, 162: 774-780. [29] ZHANG B, DUAN Y, YANG Y, et al.Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors[J]. Eur J Med Chem, 2022, 227: 113928. [30] ZHANG L, WANG S, YANG M, et al.Design, synthesis and bioevaluation of 3-oxo-6-aryl-2,3-dihydropyridazine-4-carbohydrazide derivatives as novel xanthine oxidase inhibitors[J]. Bioorg Med Chem, 2019, 27(9): 1818-1823. [31] JOSHI G, SHARMA M, KALRA S, et al.Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition[J]. Bioorg Chem, 2021, 107: 104620. [32] MALIK N, DHIMAN P, KHATKAR A.In silico design and synthesis of hesperitin derivatives as new xanthine oxidase inhibitors[J]. BMC Chem, 2019, 13(1): 53. [33] HO SL, LIN CT, LEE SS.In silico design and synthesis of N-arylalkanyl 2-naphthamides as a new class of non-purine xanthine oxidase inhibitors[J]. Drug Dev Res, 2021, 82(6): 789-801. [34] MARAHATHA R, BASNET S, BHATTARAI BR, et al.Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis[J]. BMC Complement Med Ther, 2021, 21(1): 1. [35] HU SS, ZHANG TJ, WAND ZR, et al.Design, synthesis and structure-activity relationship of N-phenyl aromatic amide derivatives as novel xanthine oxidase inhibitors[J]. Bioorg Chem, 2023, 133: 106403. [36] HOSOYA T, SASAKI T, HASHIMOTO H, et al.Clinical efficacy and safety of topiroxostat in Japanese male hyperuricemic patients with or without gout: an exploratory, phase 2a, multicentre, randomized, double-blind, placebo-controlled study[J]. Journal of Clinical Pharmacy and Therapeutics, 2016, 41(3): 298-305. [37] MACKENZIE IS, FORD I, NUKI G, et al.Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial[J]. Lancet, 2020, 396(10264): 1745-1757. |