Chinese Journal of Pharmacovigilance ›› 2024, Vol. 21 ›› Issue (1): 33-39.
DOI: 10.19803/j.1672-8629.20230802
Previous Articles Next Articles
GAO Yuan1, SHI Wei1,4, XIAO Xiaohe2,3#, BAI Zhaofang2,3#, WANG Jiabo1,*
Received:
2023-12-25
Online:
2024-01-15
Published:
2024-01-18
CLC Number:
GAO Yuan, SHI Wei, XIAO Xiaohe, BAI Zhaofang, WANG Jiabo. Research progress on the animal models of idiosyncratic drug-induced liver injury[J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 33-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgywjj.com/EN/10.19803/j.1672-8629.20230802
[1] XIAO XH, ZHAO X, BAI ZF, et al.New outlook on safety of traditional Chinese medicine: concept and practice[J]. China Journal of Chinese Materia Medica(中国中药杂志), 2023, 48(10): 2557-2564. [2] BAI ZF, GAO Y, ZUO XB, et al.Progress in research on the pathogenesis of immune regulation and idiosyncraticdrug-induced liver injury[J]. Acta Pharmaceutica Sinica(药学学报), 2017, 52(7): 1019-1026. [3] GAI YJ, ZHAO X, BAI ZF, et al.Prevention and control of safety risks of traditional Chinese medicine based on indirect knowledge of toxicity[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2021, 18(11): 1004-1008. [4] BAI ZF, EWANG JB, XIAOXH. Cognition innovation of toxicity of Chinese medicine and safe and precise medication[J]. China Journal of Chinese Materia Medica(中国中药杂志), 2022, 47(10): 2557-2564. [5] HUSSAINI SH, FARRINGTON EA.Idiosyncratic drug-induced liver injury: an overview[J]. Expert Opin Drug Saf, 2007, 6(6): 673-684. [6] CHALASANI NP, MADDUR H, RUSSO MW, et al.ACG clinical guideline: diagnosis and management of idiosyncratic drug-induced liver injury[J]. Am J Gastroenterol, 2021, 116(5): 878-898. [7] DI ZEO-SÁNCHEZ DE, SEGOVIA-ZAFRA A, MATILLA-CABELLO G, et al. Modeling drug-induced liver injury: current status and future prospects[J]. Expert Opin Drug Metab Toxicol, 2022, 18(9): 555-573. [8] MOSEDALE M, WATKINS PB.Drug-induced liver injury: Advances in mechanistic understanding that will inform risk management[J]. Clin Pharmacol Ther, 2017, 101(4): 469-480. [9] LUCENA MI, GARCÍA-MARTÍN E, ANDRADE RJ, et al. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury[J]. Hepatology, 2010, 52(1): 303-312. [10] BALL AL, JOLLY CE, LENNON MG, et al. The generation of HepG2 transmitochondrial cybrids to reveal the role of mitochondrial genotype in idiosyncratic drug-induced liver injury[J/OL]. Elife,(2023-06-15)[2023-12-30]. https://elifesciences.org/articles/78187. [11] HAN D, DARA L, WIN S, et al.Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria[J]. Trends Pharmacol Sci, 2013, 34(4): 243-253. [12] LIM PL, LIU J, GO ML, et al.The mitochondrial superoxide/thioredoxin-2/Ask1 signaling pathway is critically involved in troglitazone-induced cell injury to human hepatocytes[J]. Toxicol Sci, 2008, 101(2): 341-349. [13] VILLANUEVA-PAZ M, MORÁN L, LÓPEZ-ALCÁNTARA N, et al. Oxidative stress in drug-induced liver injury(DILI): from mechanisms to biomarkers for use in clinical practice[J]. Antioxidants(Basel), 2021, 10(3): 390. [14] ALHAZZANI K, ALREWILY SQ, ALJERIAN K, et al.Hydroxychloroquine ameliorates dasatinib-induced liver injury via decrease in hepatic lymphocytes infiltration[J]. Hum Exp Toxicol, 2023, 42: 9603271231188492. [15] LEE YH, CHUNG MC, LIN Q, et al.Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2(+/-) mice: two-stage oxidative injury[J]. Toxicol Appl Pharmacol, 2008, 231(1): 43-51. [16] ONG MM, WANG AS, LEOW KY, et al.Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2(+/-) mice[J]. Free Radic Biol Med, 2006, 40(3): 420-429. [17] ULRICH RG, BACON JA, BRASS EP, et al.Metabolic, idiosyncratic toxicity of drugs: overview of the hepatic toxicity induced by the anxiolytic, panadiplon[J]. Chem Biol Interact, 2001,134(3): 251-270. [18] EZHILARASAN D, MANI U.Valproic acid induced liver injury: an insight into molecular toxicological mechanism[J]. Environ Toxicol Pharmacol, 2022, 95: 103967. [19] HOPE OA, HARRIS KM.Management of epilepsy during pregnancy and lactation[J]. Bmj, 2023, 382: e074630. [20] SHNAYDER NA, GRECHKINA VV, KHASANOVA AK, et al.Therapeutic and toxic effects of valproic acid metabolites[J]. Metabolites, 2023, 13(1): 134. [21] MESEGUER ES, ELIZALDE MU, BOROBIA AM, et al.Valproic acid-induced liver injury: a case-control study from a prospective pharmacovigilance program in a tertiary hospital[J]. J Clin Med, 2021, 10(6): 1153. [22] KNAPP AC, TODESCO L, BEIER K, et al.Toxicity of valproic acid in mice with decreased plasma and tissue carnitine stores[J]. J Pharmacol Exp Ther, 2008, 324(2): 568-575. [23] BAPTISSART M, BRADISH CM, JONES BS, et al.Zac1 and the imprinted gene network program juvenile NAFLD in response to maternal metabolic syndrome[J]. Hepatology, 2022, 76(4): 1090-1104. [24] CHEN F, LIU Q, XIONG Y, et al.Current strategies and potential prospects of nanomedicine-mediated therapy in inflammatory bowel disease[J]. Int J Nanomedicine, 2021, 16: 4225-4237. [25] HOLT A, STRANGE JE, NOUHRAVESH N, et al.Heart failure following anti-inflammatory medications in patients with type 2 diabetes mellitus[J]. J Am Coll Cardiol, 2023, 81(15): 1459-1470. [26] XU H, ZHANG B, CHEN Y, et al.Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment[J]. Ann Rheum Dis, 2023, 82(3): 416-427. [27] FANG F, NI Y, YU H, et al.Inflammatory endothelium-targeted and cathepsin responsive nanoparticles are effective against atherosclerosis[J]. Theranostics, 2022, 12(9): 4200-4220. [28] CHEN SN, TAN Y, XIAO XC, et al.Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis[J]. Acta Pharmacol Sin, 2021, 42(10): 1610-1619. [29] HUANG S, WANG Y, XIE S, et al.Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/d-galactosamine-induced acute liver failure through inhibiting GSK3 [30] ZHAO Z, NING J, BAO XQ, et al.Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021, 9(1): 226. [31] GAO Y, XU G, MA L, et al.Icariside I specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity[J]. Cell Commun Signal, 2021, 19(1): 13. [32] RAO T, LIU YT, ZENG XC, et al.The hepatotoxicity of Polygonum multiflorum: the emerging role of the immune-mediated liver injury[J]. Acta Pharmacol Sin, 2021, 42(1): 27-35. [33] LIU T, XU G, LI Y, et al.Discovery of bakuchiol as an AIM2 inflammasome activator and cause of hepatotoxicity[J]. J Ethnopharmacol, 2022, 298: 115593. [34] SHI W, LIU T, YANG H, et al.Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury[J]. J Ethnopharmacol, 2024, 319(Pt 1): 117063. [35] LUYENDYK JP, MADDOX JF, COSMA GN, et al.Ranitidine treatment during a modest inflammatory response precipitates idiosyncrasy-like liver injury in rats[J]. J Pharmacol Exp Ther, 2003, 307(1): 9-16. [36] TU C, GAO Y, SONG D, et al.Screening for susceptibility-related biomarkers of diclofenac-induced liver injury in rats using metabolomics[J]. Front Pharmacol, 2021, 12: 693928. [37] FONTANA RJ, BJORNSSON ES, REDDY R, et al.The Evolving Profile of Idiosyncratic Drug-Induced Liver Injury[J]. Clin Gastroenterol Hepatol, 2023, 21(8): 2088-2099. [38] SHAW PJ, HOPFENSPERGER MJ, GANEY PE, et al.Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha[J]. Toxicol Sci, 2007, 100(1): 259-266. [39] SHAW PJ, FULLERTON AM, SCOTT MA, et al.The role of the hemostatic system in murine liver injury induced by coexposure to lipopolysaccharide and trovafloxacin, a drug with idiosyncratic liability[J]. Toxicol Appl Pharmacol, 2009, 236(3): 293-300. [40] CHENG L, YOU Q, YIN H, et al.Effect of polyI:C cotreatment on halothane-induced liver injury in mice[J]. Hepatology, 2009, 49(1): 215-226. [41] SHAW PJ, GANEY PE, ROTH RA.Trovafloxacin enhances the inflammatory response to a Gram-negative or a Gram-positive bacterial stimulus, resulting in neutrophil-dependent liver injury in mice[J]. J Pharmacol Exp Ther, 2009, 330(1): 72-78. [42] ZHANG ML, ZHAO X, LI WX, et al.Yin/Yang associated differential responses to [43] LI CY, LI XF, TU C, et al.The idiosyncratic hepatotoxicity of Polygonum multiflorum based on endotoxin model[J]. Acta Pharmaceutica Sinica(药学学报), 2015, 50(1): 28-33. [44] HE L, YIN P, MENG Y, et al.Immunological synergistic mechanisms of trans-/cis-stilbene glycosides in Heshouwu-related idiosyncratic liver injury[J]. Sci Bull(Beijing), 2017, 62(11): 748-751. [45] ZHANG L, NIU M, WEI AW, et al.Clinical correlation between serum cytokines and the susceptibility to Polygonum multiflorum-induced liver injury and an experimental study[J]. Food Funct, 2022, 13(2): 825-833. [46] XIAO XH, GUO YM, WANG JB, et al.Scientific evaluation and risk prevention of herb induced liver injury: A case study of Polygonum Multiflorum[J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases(中西医结合肝病杂志), 2021, 31(3): 193-196. [47] METUSHI IG, HAYES MA, UETRECHT J.Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients[J]. Hepatology, 2015, 61(4): 1332-1342. [48] CHO T, KOK LY, UETRECHT J.Testing possible risk factors for idiosyncratic drug-induced liver injury using an amodiaquine mouse model and co-treatment with 1-methyl-d-tryptophan or acetaminophen[J]. ACS Omega, 2021, 6(7): 4656-4662. [49] MAK A, UETRECHT J.The role of CD8+T cells in amodiaquine-induced liver injury in PD1-/- mice cotreated with anti-CTLA-4[J]. Chem Res Toxicol, 2015, 28(8): 1567-1573. [50] MAK A, UETRECHT J.The Combination of anti-CTLA-4 and PD1-/- mice unmasks the potential of isoniazid and nevirapine to cause liver injury[J]. Chem Res Toxicol, 2015, 28(12): 2287-2291. [51] ROTH RA, GANEY PE.Animal models of idiosyncratic drug-induced liver injury--current status[J]. Crit Rev Toxicol, 2011, 41(9): 723-739. [52] DUGAN CM, MACDONALD AE, ROTH RA, et al.A mouse model of severe halothane hepatitis based on human risk factors[J]. J Pharmacol Exp Ther, 2010, 333(2): 364-372. [53] KURTH MJ, YOKOI T, GERSHWIN ME.Halothane-induced hepatitis: paradigm or paradox for drug-induced liver injury[J]. Hepatology, 2014, 60(5): 1473-1475. [54] YOKOI T, ODA S.Models of idiosyncratic drug-induced liver injury[J]. Annu Rev Pharmacol Toxicol, 2021, 61: 247-268. [55] TESCHKE R, DANAN G.Idiosyncratic drug induced liver injury, cytochrome P450, metabolic risk factors and lipophilicity: highlights and controversies[J]. Int J Mol Sci, 2021, 22(7): 3441. [56] ANDÚJAR-VERA F, ALÉS-PALMER ML, MUÑOZ-DE-RUEDA P, et al. Metabolomic analysis of pediatric patients with idiosyncratic drug-induced liver injury according to the updated RUCAM[J]. Int J Mol Sci, 2023, 24(17): 13562. [57] CRIBB AE, MCQUAID T, RENTON KW.Effect of lipopolysaccharide(LPS)-evoked host defense activation on hepatic microsomal formation and reduction of sulfamethoxazole hydroxylamine in the rat[J]. Biochem Pharmacol, 2001, 62(4): 457-459. [58] ANTOINE D J, MERCER AE, WILLIAMS DP, et al.Mechanism-based bioanalysis and biomarkers for hepatic chemical stress[J]. Xenobiotica, 2009, 39(8): 565-577. [59] WEI H, LI AP.Permeabilized cryopreserved human hepatocytes as an exogenous metabolic system in a novel metabolism-dependent cytotoxicity assay for the evaluation of metabolic activation and detoxification of drugs associated with drug-induced liver injuries: results with acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone[J]. Drug Metab Dispos, 2022, 50(2): 140-149. [60] DEN BRAVER MW, DEN BRAVER-SEWRADJ SP, VERMEULEN NP, et al. Characterization of cytochrome P450 isoforms involved in sequential two-step bioactivation of diclofenac to reactive p-benzoquinone imines[J]. Toxicol Lett, 2016, 253: 46-54. [61] STEPHENS C, LUCENA MI, ANDRADE RJ.Genetic risk factors in the development of idiosyncratic drug-induced liver injury[J]. Expert Opin Drug Metab Toxicol, 2021, 17(2): 153-169. [62] STEPHENS C, LÓPEZ-NEVOT MÁ, RUIZ-CABELLO F, et al. HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity[J]. PLoS One, 2013, 8(7): e68111. [63] LI C, RAO T, CHEN X, et al.HLA-B*35:01 Allele is a potential biomarker for predicting polygonum multiflorum-induced liver injury in humans[J]. Hepatology, 2019, 70(1): 346-357. [64] YANG WN, PANG LL, ZHOU JY, et al.Single-nucleotide polymorphisms of HLA and Polygonum multiflorum-induced liver injury in the Han Chinese population[J]. World J Gastroenterol, 2020, 26(12): 1329-1339. [65] NICOLETTI P, AITHAL GP, BJORNSSON ES, et al.Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in hla and other genes in a genome-wide association study[J]. Gastroenterology, 2017, 152(5): 1078-1089. [66] DALY AK, DONALDSON PT, BHATNAGAR P, et al.HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin[J]. Nat Genet, 2009, 41(7): 816-819. [67] BRUNO CD, FREMD B, CHURCH RJ, et al.HLA associations with infliximab-induced liver injury[J]. Pharmacogenomics J, 2020, 20(5): 681-686. [68] STOLZ A.Newly identified genetic variants associated with idiosyncratic drug-induced liver injury[J]. Curr Opin Gastroenterol, 2022, 38(3): 230-238. [69] CIRULLI ET, NICOLETTI P, ABRAMSON K, et al.A missense variant in ptpn22 is a risk factor for drug-induced liver injury[J]. Gastroenterology, 2019, 156(6): 1707-1716. |
[1] | LI Jiaxin, LIU Huimin, QIAN Wenxiu, MA Ning, SONG Lili, LI Yubo. Nephrotoxic effects and usage of traditional Chinese medicines based on the Traditional Chinese Medicine Systems Toxicology Database [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 173-180. |
[2] | ZHANG Jian, FANG Huihua. Applicability of evaluation standards for use of traditional Chinese medicine injections for promoting blood circulation and removing blood stasis [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 185-189. |
[3] | BAI Zhaofang, ZHAN Xiaoyan, YAO Qing, CHEN Simin, ZHAO Xu, XIAO Xiaohe. Theoretical innovation and technological breakthroughs in the safety evaluation of traditional Chinese medicine: disease-syndrome-based toxicology [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 6-14. |
[4] | GUO Longxin, GAO Yunjuan, WU Chengzhao, LONG Minjuan, ZHU Shengkai, SONG Haibo, ZHAO Xu, XIAO Xiaohe. Exploring new risk signals and susceptibility factors of traditional Chinese medicine-induced hepatotoxicity based on big data from adverse reaction monitoring [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 15-19. |
[5] | ZHANG Jingsheng, JI Zuen, PANG Bo, XU Yingli, CAO Shan, ZHANG Yu, SUN Qiyue, SUN Jing, LI Shuran, ZHANG Wei, ZHAO Ronghua, CUI Xiaolan. Discussion on traditional Chinese medicine theory and modern pharmacology of Xuanfei Baidu decoction for treating novel coronavirus infection [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 55-58. |
[6] | LI Shuran, GUO Shanshan, JI Zuen, ZHANG Wei, CUI Xiaolan. Research status of cognitive dysfunction after SARS-CoV-2 infection [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 59-64. |
[7] | SHANG Huiying, WEI Xue, CHENG Hongbo, MA Zengchun, TU Bodan, XIAO Chengrong, LIU Xian, GAO Yue. Hepatotoxic components in Psoraleae Fructus based on high-content screening technology [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 74-82. |
[8] | HE Jia, JIN Yan, ZHAO Yuyang, ZHOU Junhui, LI Xiaolin, YUAN Yuan, FU Lu. Research progress in methods for toxicity-decreasing processing of toxic herbal traditional Chinese medicines [J]. Chinese Journal of Pharmacovigilance, 2023, 20(9): 1064-1070. |
[9] | ZHANG Qin, ZHANG Luyong, JIANG Zhenzhou. Research progress in safety of PPAR agonists [J]. Chinese Journal of Pharmacovigilance, 2023, 20(8): 950-955. |
[10] | CHEN Linzhen, WANG Xuan, ZHANG Xiaomeng, MA Zhiqiang, LU Shan, WU Jiarui, ZHAO Chongjun, ZHANG Bing. Evaluation of hepatotoxicity of periplocin based on zebrafish model [J]. Chinese Journal of Pharmacovigilance, 2023, 20(7): 742-748. |
[11] | DING Zihe, ZHANG Yanqiong, LIN Na. Component-effect/toxicity-target correlations of Tripterygium wilfordii in terms of lipid metabolism [J]. Chinese Journal of Pharmacovigilance, 2023, 20(5): 489-495. |
[12] | ZHU Chunwu, YU Xuejun, SUN Xin, LIU Chenghai. Overview of hepatotoxicity of Xianling Gubao capsules [J]. Chinese Journal of Pharmacovigilance, 2023, 20(5): 496-499. |
[13] | LIANG Shibing, YU Zeyu, KONG Lingyao, YAN Lijiao, HAN Mei, WU Jiarui, LIU Zhaolan, LIU Jianping. Applicability of bibliometric methods pharmacovigilance of traditioual Chinese medicine [J]. Chinese Journal of Pharmacovigilance, 2023, 20(5): 591-594. |
[14] | SHEN Pan, SUN Dezhi, ZHOU Wei, GAO Yue. Research progress in toxicity prediction of traditional Chinese medicines [J]. Chinese Journal of Pharmacovigilance, 2023, 20(4): 473-479. |
[15] | LI Shuran, GUO Shanshan, CUI Xiaolan. Research progress in correlations between herpes simplex virus-1 and Alzheimer's disease and in the prevention and treatment of herpes simplex virus-1 with traditional Chinese medicine [J]. Chinese Journal of Pharmacovigilance, 2023, 20(3): 258-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||