Chinese Journal of Pharmacovigilance ›› 2024, Vol. 21 ›› Issue (1): 59-64.
DOI: 10.19803/j.1672-8629.20230695
Previous Articles Next Articles
LI Shuran1, GUO Shanshan1, JI Zuen2,3, ZHANG Wei2,3#, CUI Xiaolan1,*
Received:
2023-11-03
Online:
2024-01-15
Published:
2024-01-18
CLC Number:
LI Shuran, GUO Shanshan, JI Zuen, ZHANG Wei, CUI Xiaolan. Research status of cognitive dysfunction after SARS-CoV-2 infection[J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 59-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgywjj.com/EN/10.19803/j.1672-8629.20230695
[1] LI YC, BAI WZ, HIRANO N, et al.Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication[J]. J Comp Neurol, 2013, 521: 203-212. [2] YAO JY, GUAN X, WEI WJ, et al.The neurotropic nature of the novel coronavirus causes nervous system damage and dysfunctio[J].Neural Injury and Functional Reconstruction(神经损伤与功能重建), 2023, 18(7): 427-431. [3] HUANG C, WANG Y, Li X, et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395: 497-506. [4] RENAUD-CHAREST O, LUI LMW, ESKANDER S, et al.Onset and frequency of depression in post-COVID-19 syndrome: a systematic review[J]. J Psychiatr Res, 2021, 144: 129-137. [5] HE XD, ZHANG LS, ZHENG X, et al.Investigation of neurological symptoms in patients with novel coronavirus pneumonia[C].Compilation of Papers of Zhejiang Provincial Neurology Academic Conference in 2020: 161. [6] SORIANO JB, MURTHY S, MARSHALL JC, et al.A clinical case definition of post-COVID-19 condition by a Delphi consensus[J].Lancet Infect Dis, 2022, 22(4): e102-e107. [7] SONG E, ZHANG C, ISRAELOW B, et al.Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19[J]. Neuropsychopharmacology, 2021, 46(13): 2235-2240. [8] ALENINA N, BADER M.ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models[J].Neurochem Res, 2019, 44(6): 1323-1329. [9] SONG E, ZHANG C, ISRAELOW B, et al.Neuroinvasion of SARS-CoV-2 in human and mouse brain[J]. J Exp Med, 2021, 218(3): e20202135. [10] RAMANI A, PRANTY AI, GOPALAKRISHNAN J.Neurotropic effects of SARS-CoV-2 modeled by the human brain organoids[J].Stem Cell Reports, 2021, 16(3): 373-384. [11] LI MY, LI L, ZHANG Y.Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues[J].Infect Dis Poverty, 2020, 9(1): 45. [12] CHEN XL, LAURENT S, ONUR OA, et al.A systematic review of neurological symptoms and complications of COVID-19[J]. J Neurol, 2021, 268(2): 392-402. [13] BEACH SR, PRASCHAN NC, HOGAN C, et al.Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement[J]. Gen Hosp Psychiatry, 2020, 65: 47-53. [14] ALEMANNO F, HOUDAYER E, PARMA A, et al.COVID-19 cognitive deficits after respiratory assistance in the subacute phase: a COVID rehabilitation unit experience[J]. PLoS One, 2021, 16(2): e0246590. [15] ASANOVA A, KHAUSTOVA O, ABDRIAKHIMOV R, et al.Cognitive impairment in patients hospitalized with COVID-19 pneumonia: correlation with demographic, clinical and emotional profile[J]. Wiad Lek, 2022, 75(8 pt 1): 1868-1875. [16] ATCHISON CJ, DAVIES B, COOPER E, et al.Long-term health impacts of COVID-19 among 242 712 adults in England[J]. Nat Commun, 2023, 14(1): 6588. [17] FURMAN S, GREEN K, LANE TE. COVID-19 and the impact on Alzheimer’s disease pathology[J/OL]. J Neurochem,(2023-10-18)[2023-11-03]. https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.159. [18] The Lancet Neurology.Long COVID: understanding the neurological effects[J]. Lancet Neurol, 2021, 20(4): 247. [19] MISKOWIAK KW, JOHNSEN S, SATTLER SM, et al.Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables[J]. Eur Neuropsychopharmacol, 2021, 46: 39-48. [20] VALERIE B, SONIA CH, VINCENT D, et al.Pattern of cognitive deficits in severe COVID-19[J]. J Neurol Neurosurg Psychiatry, 2021, 92(5): 567-568. [21] MISKOWIAK KW, FUGLEDALEN L, JESPERSEN AE, et al.Trajectory of cognitive impairments over 1 year after COVID-19 hospitalisation: pattern, severity, and functional implications[J]. Eur Neuropsychopharmacol, 2022, 59: 82-92. [22] TAVARES-JUNIOR JWL, DE-SOUA ACC, BORGES JWP, et al.COVID-19 associated cognitive impairment: a systematic review[J]. Cortex, 2022, 152: 77-97. [23] ZHANG DY, RASS V.Neurological sequelae a year after the diagnosis of COVID-19[J]. Rehabilitation in China(中国康复), 2022, 37(8): 492. [24] TAQUET M, GEDDES JR, HUSAIN M, et al.6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records[J]. Lancet Psychiatry, 2021, 8: 416-427. [25] LI C, LIU J, LIN J, et al.COVID-19 and risk of neurodegenerative disorders: a Mendelian randomization study[J]. Transl Psychiatry, 2022, 12(1): 283. [26] DUBEY S, DAS S, GHOSH R, et al.the effects of sars-cov-2 infection on the cognitive functioning of patients with pre-existing dementia[J]. J Alzheimers Dis Rep, 2023, 7(1): 119-128. [27] GROISS SJ, BALLOFF C, ELBEN S, et al.Prolonged neuropsychological deficits, central nervous system involvement, and brain stem affection after COVID-19: a case series[J]. Front Neurol, 2020, 11: 574004. [28] AMALAKANTI S, AREPALLI KVR, JILLELLA JP.Cognitive assessment in asymptomatic COVID-19 subjects[J]. Virusdisease, 2021, 32: 146-149. [29] BAUER L, LAKSONO BM, DE VRIJ FMS, et al.The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2[J]. Trends Neurosci, 2022, 45: 358-368. [30] CRIVELLI L, PALMER K, CALANDRI I, et al.Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis[J]. Alzheimers Dement, 2022, 18(5): 1047-1066. [31] BAUER L, LAKSONO BM, DE VRIJ FMS, et al.The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2[J]. Trends Neurosci, 2022, 45(5): 358-368. [32] DESFORGES M, COUPANEC AL, DUBEAU P, et al.Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system?[J]. Viruses, 2019, 12(1): 14. [33] SUZUKI M, SAITO K, MIN WP, et al.Identification of viruses in patients with postviral olfactory dysfunction[J]. Laryngoscope, 2007, 117(2): 272-277. [34] LUDLOW M, KORTEKAAS J, HERDEN C, et al.Neurotropic virus infections as the cause of immediate and delayed neuropathology[J].Acta Neuropathol, 2016, 131(2): 159-184. [35] MEINHARDT J, RADKE J, DITTMAYER C, et al.Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19[J]. Nat Neurosci, 2021, 24(2): 168-175. [36] MESSLINGER K, NEUHUBER W, MAY A.Activation of the trigeminal system as a likely target of SARS-CoV-2 may contribute to anosmia in COVID-19[J]. Cephalalgia, 2022, 42(2): 176-180. [37] BULFAMANTE G, BOCCI T, FALLENI M, et al.Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung[J]. J Neurol, 2021, 268(12): 4486-4491. [38] WENZEL J, LAMPE J, MULLER-FIELITZ H, et al.The SARS-CoV-2 main protease Mprocauses microvascular brain pathology by cleaving NEMO in brain endothelial cells[J]. Nat Neurosci, 2021, 24(11): 1522-1533. [39] KRASEMANN S, HAFERKAMP U, PFEFFERLE S, et al.The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2[J]. Stem Cell Reports, 2022, 17(2): 307-320. [40] GOMES I, KARMIRIAN K, OLIVEIRA JT, et al.SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy[J]. Lancet Reg Heal Am, 2021, 2: 100046. [41] FERREN M, FAVEDE V, DECIMO D, et al.Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection[J]. Nat Commun, 2021, 12(1): 5809. [42] HAN YL, YANG LL, KIM TW, et al. SARS-CoV-2 infection causes dopaminergic neuron senescence[J/OL]. Res Sq,(2021-05-21)[2023-11-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142658/. [43] COSENTINO G, TODISCO M, HOTA N, et al.Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: a critical systematic review[J]. Eur J Neurol, 2021, 28(11): 3856-3865. [44] SOLOMON IH, NORMANDIN E, BHATTACHARYYA S, et al.Neuropathological features of Covid-19[J]. N Engl J Med, 2020, 383: 989-992. [45] LEE MH, PERL DP, NAIR G, et al.Microvascular injury in the brains of patients with COVID-19[J]. N Engl J Med, 2021, 384(5): 481-483. [46] DE SOUSA VL, ARAUJO SB, ANTONIO LM, et al.Innate immune memory mediates increased susceptibility to Alzheimeŕs disease-like pathology in sepsis surviving mice. Brain Behav[J]. Immun, 2021, 95: 287-298. [47] FIGUEIREDO CP, BARROS-ARAGAO FGQ, NERIS RLS, et al.Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice[J]. Nat Commun, 2019, 10(1): 3890. [48] HICKMAN S, IZZY S, SEN P, et al.Microglia in neurodegeneration[J].Nat Neurosci, 2018, 21: 1359-1369. [49] FROST PS, BARROS-ARAGAO F, DA SILAVA RT, et al.Neonatal infection leads to increased susceptibility to A [50] VASEK MJ, GARBER C, DORSEY D, et al.A complement-microglial axis drives synapse loss during virus-induced memory impairment[J]. Nature, 2016, 534(7648): 538-543. [51] MATIAS I, MORGADO J, GOMES FCA.Astrocyte heterogeneity: impact to brain aging and disease[J]. Front Aging Neurosci, 2019, 11: 59. [52] LIDDELOW SA, GUTTENPLAN KA, CLARKE LE, et al.Neurotoxic reactive astrocytes are induced by activated microglia[J].Nature, 2017, 541(7638): 481-487. [53] SOUNG A, KLEIN RS.Viral encephalitis and neurologic diseases: focus on astrocytes[J]. Trends Mol Med, 2018, 24(11): 950-962. [54] GARBER C, SOUNG A, VOLLMER LL, et al.T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses[J]. Nat Neurosci, 2019, 22(8): 1276-1288. [55] HOSSEINI S, MICHAELSEN-PREUSSE K, GRIGORYAN G, et al.Type I interferon receptor signaling in astrocytes regulates hippocampal synaptic plasticity and cognitive function of the healthy CNS[J]. Cell Rep, 2020, 31(7): 107666. [56] SOUZA ID, FROST PS, FRANCA JV, et al. Acute and chronic neurological consequences of early-life Zika virus infection in mice[J]. Sci Transl Med, 2018, 10(444): eaar2749. [57] KELLY KM, SMITH JA, MEZUK B.Depression and interleukin-6 signaling: a mendelian randomization study[J]. Brain, Behavior, and Immunity, 2021, 95: 106-114. [58] LOURENCO MV, CLARKE JR, FROZZA RL, et al.TNF- [59] WONG AC, DEVASON AS, UMANA IC, et al.Serotonin reduction in post-acute sequelae of viral infection[J]. Cell, 2023, 186(22): 4851-4867, e20. [60] STEFANO GB, PTACEK R, PTACKOVA H, et al.Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce‘brain fog’ and results in behavioral changes that favor viral survival[J]. Med Sci Monit, 2021, 27: e930886. [61] ESCH T, STEFANO GB, PTACEK R, et al.Emerging roles of blood-borne intact and respiring mitochondria as bidirectional mediators of pro- and anti-inflammatory processes[J]. Med Sci Monit, 2020, 26: e924337. [62] MA QL, YAO CL, WU Y, et al. Neurological disorders after severe pneumonia are associated with translocation of endogenous bacteria from the lung to the brain[J]. Sci Adv, 2023, 9(42): eadi0699. [63] GOMAA AA, ABDEL-WADOOD YA, GOMAA MA.Glycyrrhizin and boswellic acids, the golden nutraceuticals: multitargeting for treatment of mild-moderate COVID-19 and prevention of post-COVID cognitive impairment[J]. Inflammopharmacology, 2022, 30(6): 1977-1992. [64] GONG Y, JIANG X, YANG S, et al.The biological activity of 3-O-acetyl-11-keto- [65] LIU W, HUANG S, LI Y, et al.Suppressive effect of glycyrrhizic acid against lipopolysaccharide-induced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway[J]. Food Nutr Res, 2019, 63(1): 1516. [66] JIANG R, GAO J, SHEN J, et al.Glycyrrhizic acid improves cognitive levels of aging mice by regulating t/b cell proliferation[J]. Front Aging Neurosci, 2020, 12: 570116. [67] GOMAA AA, MAKBOUL RM, AL-MOKHTAR MA, et al.Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3 [68] BUCCELLATO FR, DANCA M, FENOGLIPO C, et al.Role of oxidative damage in Alzheimer's disease and neurodegeneration: from pathogenic mechanisms to biomarker discovery[J]. Antioxidants(Basel), 2021, 10(9): 1353. [69] LIN F, SHAN W, ZHENG Y, et al.Toll-like receptor 2 activation and up-regulation by high mobility group box-1 contribute to post-operative neuroinflammation and cognitive dysfunction in mice[J]. J Neurochem, 2021, 158(2): 328-341. [70] SIDDIQUI A, SHAH Z, JAHAN RN, et al.Mechanistic role of boswellic acids in Alzheimer's disease: emphasis on anti-inflammatory properties[J]. Biomed Pharmacother, 2021, 144: 112250. [71] MESHKAT S, MAHMOODI BS, RAJAEI S, et al.Boswellia serrata extract shows cognitive benefits in a double-blind, randomized, placebo-controlled pilot clinical trial in individuals who suffered traumatic brain injury[J]. Brain Inj, 2022, 36(4): 553-559. [72] SEDIGHI B, PARDAKHTY A, KAMALI H, et al.Effect of Boswellia papyrifera on cognitive impairment in multiple sclerosis[J]. Iran J Neurol, 2014, 13(3): 149-153. [73] UDO AZ, MUHANNAD Y, BENEDIKT JB, et al.Alleviation of post-COVID-19 cognitive deficits by treatment with EGb 761®: a case series[J]. Am J Case Rep, 2022, 23: e937094. [74] SINGH M, JINDAL D, KUMAR R, et al.Molecular docking and network pharmacology interaction analysis of gingko biloba(EGB761) extract with dual target inhibitory mechanism in alzheimer's disease[J]. J Alzheimers Dis, 2023, 93(2): 705-726. [75] WANG Y, HAN Q, ZHANG S, et al.New perspective on the immunomodulatory activity of ginsenosides: focus on effective therapies for post-COVID-19[J]. Biomed Pharmacother, 2023, 165: 115154. [76] SOBRINO-RELANO S, BALBOA-BANDEIRA Y, PENA J, et al.Neuropsychological deficits in patients with persistent COVID-19 symptoms: a systematic review and meta-analysis[J]. Sci Rep, 2023, 13(1): 10309. [77] ZHANG SM, WU JH.Recent advances in COVID-19 and Alzheimer's disease[J]. Practical Geriatrics(实用老年医学), 2023, 37(5): 521-523, 527. [78] LI TY, JIA YJ, WANG YJ, et al.Research progress of treatment drugs for SARS-CoV-2[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2022, 19(11): 1266-1271. |
[1] | LI Shuran, GUO Shanshan, GAO Suangrong, BAO Lei, GENG Zihan, ZHAO Ronghua, ZHANG Jingsheng, PANG Bo, ZHANG Yu, WANG Yaxin, XU Yingli, CAO Shan, HAN Bing, CUI Xiaolan, SUN Jing. Effect of Lutongning granulethe to trigeminal neuralgia induced by chronic constriction injury of the infraorbital nerve in rats [J]. Chinese Journal of Pharmacovigilance, 2024, 21(3): 257-262. |
[2] | LI Jiaxin, LIU Huimin, QIAN Wenxiu, MA Ning, SONG Lili, LI Yubo. Nephrotoxic effects and usage of traditional Chinese medicines based on the Traditional Chinese Medicine Systems Toxicology Database [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 173-180. |
[3] | ZHANG Jian, FANG Huihua. Applicability of evaluation standards for use of traditional Chinese medicine injections for promoting blood circulation and removing blood stasis [J]. Chinese Journal of Pharmacovigilance, 2024, 21(2): 185-189. |
[4] | BAI Zhaofang, ZHAN Xiaoyan, YAO Qing, CHEN Simin, ZHAO Xu, XIAO Xiaohe. Theoretical innovation and technological breakthroughs in the safety evaluation of traditional Chinese medicine: disease-syndrome-based toxicology [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 6-14. |
[5] | GUO Longxin, GAO Yunjuan, WU Chengzhao, LONG Minjuan, ZHU Shengkai, SONG Haibo, ZHAO Xu, XIAO Xiaohe. Exploring new risk signals and susceptibility factors of traditional Chinese medicine-induced hepatotoxicity based on big data from adverse reaction monitoring [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 15-19. |
[6] | GAO Yuan, SHI Wei, XIAO Xiaohe, BAI Zhaofang, WANG Jiabo. Research progress on the animal models of idiosyncratic drug-induced liver injury [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 33-39. |
[7] | ZHANG Jingsheng, JI Zuen, PANG Bo, XU Yingli, CAO Shan, ZHANG Yu, SUN Qiyue, SUN Jing, LI Shuran, ZHANG Wei, ZHAO Ronghua, CUI Xiaolan. Discussion on traditional Chinese medicine theory and modern pharmacology of Xuanfei Baidu decoction for treating novel coronavirus infection [J]. Chinese Journal of Pharmacovigilance, 2024, 21(1): 55-58. |
[8] | HE Jia, JIN Yan, ZHAO Yuyang, ZHOU Junhui, LI Xiaolin, YUAN Yuan, FU Lu. Research progress in methods for toxicity-decreasing processing of toxic herbal traditional Chinese medicines [J]. Chinese Journal of Pharmacovigilance, 2023, 20(9): 1064-1070. |
[9] | LI Tan, ZHANG Yang, ZHANG Wangde, WANG Yun. Efficacy and safety of different analgesia drugs in the treatment of lower extremity ischemic pain [J]. Chinese Journal of Pharmacovigilance, 2023, 20(6): 680-683. |
[10] | DING Zihe, ZHANG Yanqiong, LIN Na. Component-effect/toxicity-target correlations of Tripterygium wilfordii in terms of lipid metabolism [J]. Chinese Journal of Pharmacovigilance, 2023, 20(5): 489-495. |
[11] | LIANG Shibing, YU Zeyu, KONG Lingyao, YAN Lijiao, HAN Mei, WU Jiarui, LIU Zhaolan, LIU Jianping. Applicability of bibliometric methods pharmacovigilance of traditioual Chinese medicine [J]. Chinese Journal of Pharmacovigilance, 2023, 20(5): 591-594. |
[12] | SHEN Pan, SUN Dezhi, ZHOU Wei, GAO Yue. Research progress in toxicity prediction of traditional Chinese medicines [J]. Chinese Journal of Pharmacovigilance, 2023, 20(4): 473-479. |
[13] | LI Shuran, GUO Shanshan, CUI Xiaolan. Research progress in correlations between herpes simplex virus-1 and Alzheimer's disease and in the prevention and treatment of herpes simplex virus-1 with traditional Chinese medicine [J]. Chinese Journal of Pharmacovigilance, 2023, 20(3): 258-261. |
[14] | WANG Guanjie, DU Shifang, LIU Baosheng, HAN Jiayan, WANG Zhenhua, LU Changfei. 107 cases of liver injury caused by traditional Chinese medicines [J]. Chinese Journal of Pharmacovigilance, 2023, 20(3): 331-333. |
[15] | XU Shuai, ZHANG Ling, ZHAO Yuqing, YANG Yidian, BIAN Haoyu, ZHANG Liping. Advances in multi-target intervention in vascular endothelial injury in metabolic syndrome by traditional Chinese medicine [J]. Chinese Journal of Pharmacovigilance, 2023, 20(3): 353-359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||