Chinese Journal of Pharmacovigilance ›› 2024, Vol. 21 ›› Issue (4): 464-468.
DOI: 10.19803/j.1672-8629.20230536
Previous Articles Next Articles
LI Mingqi, ZHAO Xiaolu, GAO Xiaoyang, MA Yuehong*
Received:
2023-09-01
Online:
2024-04-15
Published:
2024-04-18
CLC Number:
LI Mingqi, ZHAO Xiaolu, GAO Xiaoyang, MA Yuehong. Research progress in correlations between epithelial-mesenchymal transition and hepatic fibrosis[J]. Chinese Journal of Pharmacovigilance, 2024, 21(4): 464-468.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgywjj.com/EN/10.19803/j.1672-8629.20230536
[1] ZHANG WF, WANG ZC.Research overview of the molecular mechanism of traditional Chinese medicine in the treatment of liver fibrosis[J]. China Journal of Traditional Chinese Medicine(中华中医药学刊), 2022, 40(12): 119-124. [2] KISSELEVA T, BRENNER D.Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. [3] FRIEDMAN SL, PINZANI M.Hepatic fibrosis 2022: unmet needs and a blueprint for the future[J]. Hepatology, 2022, 75(2): 473-488. [4] CHEN Y, FAN Y, GUO DY, et al.Study on the relationship between hepatic fibrosis and epithelial-mesenchymal transition in intrahepatic cells[J]. Biomed Pharmacother, 2020, 129: 110413. [5] MANFIOLETTI G, FEDELE M.Epithelial-mesenchymal transition (EMT) 2021[J]. International Journal of Molecular Sciences, 2022, 23(10): 58-48. [6] MARCONI GD, FONTICOLI L, RAJAN TS, et al.Epithelial-Mesenchymal Transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells, 2021, 10(7): 1587. [7] BAGHAEI K, MAZHARI S, TOKHANBIQLI S, et al.Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis[J]. Drug Discovery Today, 2022, 27(4): 1044-1061. [8] KAMM DR, MCCOMMIS KS.Hepatic stellate cells in physiology and pathology[J]. J Physiol, 2022, 600(8): 1825-1837. [9] TSUCHIDA T, FRIEDMAN SL.Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. [10] RIVEDI P, WANG S, FRIEDMAN SL.The power of plasticity-metabolic regulation of hepatic stellate cells[J]. Cell Metab, 2021, 33(2): 242-257. [11] KONG D, ZHANG Z, CHEN L, et al.Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy[J]. Redox Biol, 2020, 36: 101600. [12] SONG L, CHEN TY, ZHAO XJ, et al.Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-β1/Smads signalling[J]. Br J Pharmacol, 2019, 176(11): 1619-1634. [13] ZHAO YL, ZHU RT, SUN YL.Epithelial-mesenchymal transition in liver fibrosis[J]. Biomed Rep, 2016, 4(3): 269-274. [14] FAN J, WANG Q, ZHANG Z, et al.Curcumin mitigates the epithelial-to-mesenchymal transition in biliary epithelial cells through upregulating CD109 expression[J]. Drug Dev Res, 2019, 80(7): 992-999. [15] CHILVERY S, BANSOD S, SAIFI MA, et al.Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways[J]. Int Immunopharmacol, 2020, 88: 106909. [16] HU HH, CHEN DQ, WANG YN, et al.New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. [17] CHEN Y, FAN Y, GUO DY, et al.Study on the relationship between hepatic fibrosis and epithelial-mesenchymal transition in intrahepatic cells[J]. Biomed Pharmacother, 2020, 129: 110413. [18] SUN S, XIE F, ZHANG Q, et al.Advanced oxidation protein products induce hepatocyte epithelial-mesenchymal transition via a ROS-dependent, TGF-β/Smad signaling pathway[J]. Cell Biol Int, 2017, 41(8): 842-853. [19] SHU G, DAI C, YUSUF A, et al.Limonin relieves TGF-β-induced hepatocyte EMT and hepatic stellate cell activation in vitro and CCl4-induced liver fibrosis in mice via upregulating Smad7 and subsequent suppression of TGF-β/Smad cascade[J]. J Nutr Biochem, 2022, 107: 109039. [20] PARK JH, YOON J, LEE KY, et al.Effects of geniposide on hepatocytes undergoing epithelial-mesenchymal transition in hepatic fibrosis by targeting TGFβ/Smad and ERK-MAPK signaling pathways[J]. Biochimie, 2015, 113: 26-34. [21] PARK JH, PARK B, PARK KK.Suppression of hepatic epithelial-to-mesenchymal transition by melittin via blocking of TGFβ/Smad and MAPK-JNK signaling pathways[J]. Toxins (Basel), 2017, 9(4): 138. [22] XIONG PP, LIU F.Research progress on the role of epithelial-mesenchymal transition-related signaling pathways in liver fibrosis[J]. International Journal of Digestive Diseases(国际消化病杂志), 2016, 36(3): 153-155, 196. [23] ZHANG TT, YAN YB, YE L, et al.Hedgehog pathway-mediated epithelial-mesenchymal transition promotes CCl4-induced liver fibrosis in rats[J]. Journal of Zhejiang University of Traditional Chinese Medicine(浙江中医药大学学报), 2021, 45(4): 345-352. [24] ZHANG W, WAN YP, ZHU X.Research progress of Notch signaling pathway in liver fibrosis[J]. Tianjin Medicine(天津医药), 2021, 49(7): 773-777. [25] PAN Y, ZHANG QD, FANG FM, et al.The role of Notch signal transduction pathway in the activation of primary hepatic stellate cells in vitro[J]. Chinese Journal of Hepatology(Electronic Edition)(中国肝脏病杂志电子版), 2018, 10(3): 66-72. [26] WANG YJ, XIE XL, JIANG HQ.Research progress on regulation of epithelial-mesenchymal transition in liver fibrosis and targeted therapy[J]. Journal of Clinical Hepatobiliary Diseases(临床肝胆病杂志), 2021, 37(1): 165-168. [27] ZHANG SW, YU XQ, CHEN F, et al.Research progress on the role of Wnt signaling pathway in hepatic stellate cell activation[J]. Shandong Medicine(山东医药), 2019, 59(19): 98-101. [28] MCCUBREY JA, RAKUS D, GIZAK A, et al.Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-diverse effects on cell growth, metabolism and cancer[J]. Biochim Biophys Acta, 2016, 1863(12): 2942-2976. [29] ZHU Y, TAN J, XIE H, et al.HIF-1α regulates EMT via the Snail and β-catenin pathways in paraquat poisoning-induced early pulmonary fibrosis[J]. J Cell Mol Med, 2016, 20(4): 688-697. [30] YANG X, DU X, SUN L, et al.SULT2B1b promotes epithelial-mesenchymal transition through activation of the β-catenin/MMP7 pathway in hepatocytes[J]. Biochem Biophys Res Commun, 2019, 510(4): 495-500. [31] LI Y, CHEN R, MENG ZP, et al.Research progress on the involvement of microRNAs in the regulation of liver fibrosis[J]. Medical Review(医学综述), 2021, 27(21): 4177-4182. [32] ZHANG CY, YAN YX, LIANG J, et al.Research progress on the role of long non-coding RNA in liver fibrosis[J]. PLA Medical Journal(解放军医学杂志), 2021, 46(2): 186-192. [33] ZHU J, LUO Z, PAN Y, et al.H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes[J]. J Cell Physiol, 2019, 234(6): 9698-9710. [34] ZHENG J, YU F, DONG P, et al.Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152[J]. Oncotarget, 2016, 7(39): 62886-62897. [35] GHAFOURI-FARD S, ABAK A, TALEBI SF, et al.Role of miRNA and lncRNAs in organ fibrosis and aging[J]. Biomed Pharmacother, 2021, 143: 112132. [36] ZHANG K, ZHANG M, YAO Q, et al.The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition[J]. Theranostics, 2019, 9(25): 7566-7582. [37] YU F, GENG W, DONG P, et al.LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212[J]. Cell Death Dis, 2018, 9(10): 1014. [38] DENG Y, LI J, ZHOU M, et al.C-Myc affects hedgehog pathway via KCNQ1OT1/RAC1: a new mechanism for regulating HSC proliferation and epithelial-mesenchymal transition[J]. Dig Liver Dis, 2021, 53(11): 1458-1467. [39] PAN Y, WANG J, HE L, et al. MicroRNA-34a promotes EMT and liver fibrosis in primary biliary cholangitis by regulating TGF-β1/smad pathway[J/OL]. J Immunol Res, (2021-04-23)[2024-02-22]. https://www.hindawi.com/journals/jir/2021/6890423/. [40] WU K, YE C, LIN L, et al.Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT[J]. Clin Sci (Lond), 2016, 130(16): 1469-1480. [41] LANG Z, LI Y, LIN L, et al.Hepatocyte-derived exosomal miR-146a-5p inhibits hepatic stellate cell EMT process: a crosstalk between hepatocytes and hepatic stellate cells[J]. Cell Death Discov, 2023, 9(1): 304. [42] ZHENG J, WANG W, YU F, et al.MicroRNA-30a suppresses the activation of hepatic stellate cells by inhibiting epithelial-to-mesenchymal transition[J]. Cell Physiol Biochem, 2018, 46(1): 82-92. [43] CHENG B, ZHU Q, LIN W, et al.MicroRNA-122 inhibits epithelial-mesenchymal transition of hepatic stellate cells induced by the TGF-β1/Smad signaling pathway[J]. Exp Ther Med, 2019, 17(1): 284-290. [44] LIANG Z, LI J, ZHAO L, et al.MiR375 affects the hedgehog signaling pathway by downregulating RAC1 to inhibit hepatic stellate cell viability and epithelialmesenchymal transition[J]. Mol Med Rep, 2021, 23(3): 182. |
[1] | YAN Yishu, ZHAO Yan, LU Tiangong, SUN Zhenxiao. Emodin -8-O-β-D-glucoside combined with paclitaxel inhibits the viability and metastasis of human breast cancer cells [J]. Chinese Journal of Pharmacovigilance, 2023, 20(7): 728-734. |
[2] | LIU Yadi, WANG Xue, YIN Xiaoyang, LIU Zeyu, ZHANG Xiaomeng, ZHANG Bing, LIN Zhijian. Clinical applicability and safety risks of puerarin in tumor adjuvant therapy based on CiteSpace and bioinformatics technology [J]. Chinese Journal of Pharmacovigilance, 2023, 20(12): 1407-1414. |
[3] | TANG Jiong, LIU Ying. One case of gynecomastia induced by efavirenz tablets [J]. Chinese Journal of Pharmacovigilance, 2023, 20(11): 1306-1308. |
[4] | SU Xinxin, ZHAO Xiaoxiao, XIE Yanming. Real-world analysis of combined administration of elemene emulsion injection in patients with liver cancer [J]. Chinese Journal of Pharmacovigilance, 2022, 19(9): 929-934. |
[5] | YE Qian, WANG Qi, YU Min, WANG Xue, GENG Xingchao, ZHANG Leshuai, WEN Hairuo. Study on the mutagenic risk of nitrosamine compounds [J]. Chinese Journal of Pharmacovigilance, 2022, 19(8): 881-888. |
[6] | WAN Wei, CHANG Jun, ZHU Du, CHEN Wen. Research progress on hesperetin and its derivatives against fibrosis [J]. Chinese Journal of Pharmacovigilance, 2022, 19(5): 579-584. |
[7] | ZHANG Xiaomeng, LYU Jintao, ZHANG Bing, LIN Zhijian, LIU Rongxue. Risk assessment and pre-warning of injection within Bufonis Venenum in the treatment of liver cancer [J]. Chinese Journal of Pharmacovigilance, 2022, 19(5): 469-474. |
[8] | GAO Mei, MA Hui, CHEN Kai, ZHANG Daizhou. Genotoxicity Evaluation of (R)-(+)-Rabeprazole Sodium for Injection [J]. Chinese Journal of Pharmacovigilance, 2020, 17(9): 559-563. |
[9] | HAO Li-pan, WANG Shu-ling*. Research on the Management of Waste Drugs Based on Extended Producer Responsibility [J]. Chinese Journal of Pharmacovigilance, 2017, 14(4): 222-225. |
[10] | DOU Li-wen, SUN Rong. Reach Progress on Animal Models with Hepatic Fibrosis and Its Application in Efficacy Evaluation of Traditional Chinese Medicine [J]. Chinese Journal of Pharmacovigilance, 2017, 14(3): 179-182. |
[11] | CHEN Ying,ZHANG Qian,HAN Shu-xian,HAN Fu-man,CHEN Liang-mian,TONG Yan,YOU Yun . Study on Toxicity of Different Extractions of Sophorae Tonkinensis [J]. Chinese Journal of Pharmacovigilance, 2017, 14(10): 582-586. |
[12] | DOU Li-wen, SUN Xiao-qian, LI Xiao-yu, SUN Rong. Study on the Protective Effect of Aqueous Extracted Components of Bupleurum against Rats' Liver Fibrosis Induced by Improvement Method [J]. Chinese Journal of Pharmacovigilance, 2015, 12(10): 577-581. |
[13] | ZHANG Xia, RUAN Xin-jian, LIU Chang, SONG Fei-xiang. Therapeutic Effects of Lamivudine and Transarterial Chemoembolization in Primary Hepatocellular Carcinomar [J]. Chinese Journal of Pharmacovigilance, 2011, 8(8): 449-451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||