Chinese Journal of Pharmacovigilance ›› 2023, Vol. 20 ›› Issue (9): 1071-1077.
DOI: 10.19803/j.1672-8629.20230332
Previous Articles Next Articles
HE Huizhen, GUO Yixian*, SUN Wanling
Received:
2023-05-26
Online:
2023-09-15
Published:
2023-09-14
CLC Number:
HE Huizhen, GUO Yixian, SUN Wanling. Research progress on targeting CD47 in treatment of lymphoma[J]. Chinese Journal of Pharmacovigilance, 2023, 20(9): 1071-1077.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgywjj.com/EN/10.19803/j.1672-8629.20230332
[1] KARIZAK AZ, SALMASI Z, GHEIBIHAYAT SM, et al.Understanding the regulation of “Don't Eat-Me” signals by inflammatory signaling pathways in the tumor microenvironment for more effective therapy[J]. Journal of Cancer Research and Clinical Oncology, 149(1): 511-529. [2] JIANG Z, SUN H, YU J, et al.Targeting CD47 for cancer immunotherapy[J]. J Hematol Oncol, 2021, 14(1): 180. [3] YANG H, XUN Y, YOU H.The landscape overview of CD47-based immunotherapy for hematological malignancies[J]. Biomarker Research, 2023, 11(1): 15. [4] ELADL E, TREMBLAY-LEMAY R, RASTGOO N, et al.Role of CD47 in hematological malignancies[J]. Journal of Hematology & Oncology, 2020, 13(1): 96. [5] JUNG YS, PARK JI.Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond beta-catenin and the destruction complex[J]. Experimental and Molecular Medicine, 2020, 52(2): 183-191. [6] CASEY SC, TONG L, LI Y, et al.MYC regulates the antitumor immune response through CD47 and PD-L1[J]. Science, 2016, 352(6282): 227-231. [7] MARQUARDT V, THERUVATH J, PAUCK D, et al.Tacedinaline (CI-994), a class I HDAC inhibitor, targets intrinsic tumor growth and leptomeningeal dissemination in MYC-driven medulloblastoma while making them susceptible to anti-CD47-induced macrophage phagocytosis via NF-kB-TGM2 driven tumor inflammation[J]. J Immunother Cancer, 2023, 11(1): e5871. [8] XU L N, WANG S H, SU X L, et al.Targeting glycogen synthase kinase 3 beta regulates CD47 expression after myocardial infarction in rats via the NF- [9] CHEN C, WANG R, CHEN X, et al.Targeting CD47 as a novel immunotherapy for breast cancer[J]. Front Oncol, 2022, 12: 924740. [10] HU H, CHENG R, WANG Y, et al.Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47[J]. The Journal of Clinical Investigation, 2023, 133(2): e153470. [11] LIAN S, XIE R, YE Y, et al.Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells[J]. Sci Rep, 2019, 9(1): 4532. [12] LÓPEZ-PEREIRA B, FERNÁNDEZ-VELASCO AA, FERNÁNDEZ-VEGA I, et al. Expression of CD47 antigen in Reed-Sternberg cells as a new potential biomarker for classical Hodgkin lymphoma[J]. Clin Transl Oncol, 2020, 22(5): 782-785. [13] GHOLIHA AR, HOLLANDER P, LOF L, et al.Checkpoint CD47 expression in classical Hodgkin lymphoma[J]. Br J Haematol, 2022, 197(5): 580-589. [14] BOUWSTRA R, HE Y, DE BOER J, et al.CD47 Expression defines efficacy of rituximab with CHOP in non-germinal center B-cell (Non-GCB) diffuse large B-cell lymphoma patients (dlbcl), but not in GCB DLBCL[J]. Cancer Immunology Research, 2019, 7(10): 1663-1671. [15] CHO J, YOON SE, KIM SJ, et al.CD47 overexpression is common in intestinal non-GCB type diffuse large B-cell lymphoma and associated with 18q21 gain[J]. Blood Adv, 2022, 6(24): 6120-6130. [16] KAZAMA R, MIYOSHI H, TAKEUCHI M, et al.Combination of CD47 and signal-regulatory protein- [17] CHEN YP, KIM HJ, WU H, et al.SIRP [18] FREILE JA, USTYANOVSKA AN, CORRALES MG, et al.CD24 Is a potential immunotherapeutic target for mantle cell lymphoma[J]. Biomedicines, 2022, 10(5): 1175. [19] MARQUES-PIUBELLI ML, PARRA ER, FENG L, et al.SIRP [20] VALENTIN R, PELUSO MO, LEHMBERG TZ, et al.The fully human anti-CD47 antibody SRF231 has dual-mechanism antitumor activity against chronic lymphocytic leukemia (CLL) cells and increases the activity of both rituximab and venetoclax[J]. Blood, 2018, 132(Suppl 1): 4393. [21] YANAGIDA E, MIYOSHI H, TAKEUCHI M, et al.Clinicopathological analysis of immunohistochemical expression of CD47 and SIRP [22] KAMIJO H, MIYAGAKI T, TAKAHASHI-SHISHIDO N, et al.Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47[J]. Leukemia, 2020, 34(3): 845-856. [23] PAN YY, YU YD, WANG XJ, et al.Tumor-associated macrophages in tumor immunity[J]. Frontiers in Immunology, 2020, 11: 11. [24] OH HH, PARK YL, PARK SY, et al.CD47 mediates the progression of colorectal cancer by inducing tumor cell apoptosis and angiogenesis[J]. Pathol Res Pract, 2022, 240: 154220. [25] AUTIO A, WANG H, VELÁZQUEZ F, et al. SIRP [26] SHENG M, LIN Y, XU D, et al.CD47-Mediated Hedgehog/SMO/GLI1 signaling promotes mesenchymal stem cell immunomodulation in mouse liver inflammation[J]. Hepatology, 2021, 74(3): 1560-1577. [27] YU J, LI S, CHEN D, et al.SIRP [28] CHEN Y, KLINGEN TA, AAS H, et al.CD47 and CD68 expression in breast cancer is associated with tumor-infiltrating lymphocytes, blood vessel invasion, detection mode, and prognosis[J]. The Journal of Pathology: Clinical Research, 2023, 9(3): 151-164. [29] HU T, LIU H, LIANG Z, et al.Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis[J]. Theranostics, 2020, 10(9): 4056-4072. [30] RAO L, WU L, LIU Z, et al.Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis[J]. Nat Commun, 2020, 11(1): 4909. [31] LIU X, WU X, WANG Y, et al.CD47 promotes human glioblastoma invasion through activation of the PI3K/Akt pathway[J]. Oncol Res, 2019, 27(4): 415-422. [32] SIKIC BI, LAKHANI N, PATNAIK A, et al.First-in-human, first-in-class phase i trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. J Clin Oncol, 2019, 37(12): 946-953. [33] ADVANI R, FLINN I, POPPLEWELL L, et al.CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma[J]. N Engl J Med, 2018, 379(18): 1711-1721. [34] ADVANI RH, FLINN I, POPPLEWELL L, et al.Activity and tolerabilty of the first-in-class anti-CD47 antibody Hu5F9-G4 with rituximab tolerated in relapsed/refractory non-Hodgkin lymphoma: Initial phase 1b/2 results[J]. Journal of Clinical Oncology, 2018, 36(15suppl): 7504. [35] NI H, CAO L, WU Z, et al.Combined strategies for effective cancer immunotherapy with a novel anti-CD47 monoclonal antibody[J]. Cancer Immunol Immunother, 2022, 71(2): 353-363. [36] ANSELL SM, MARIS MB, Lesokhin A M, et al.Phase I study of the CD47 BLocker TTI-621 in patients with relapsed or refractory hematologic malignancies[J]. Clin Cancer Res, 2021, 27(8): 2190-2199. [37] QUERFELD C, THOMPSON JA, Taylor MH, et al.Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: a multicentre, phase 1 study[J]. Lancet Haematol, 2021, 8(11): e808-e817. [38] PIETSCH E C, DONG J, CARDOSO R, et al.Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies[J]. Blood Cancer Journal, 2017, 7(2): e536. [39] PATEL K, ZONDER JA, SANO D, et al.CD47-Blocker TTI-622 shows single-agent activity in patients with advanced relapsed or refractory lymphoma: update from the ongoing first-in-human dose escalation study[J]. Blood, 2021, 138(Suppl 1): 3560. [40] YANG Y, YANG Z, YANG Y.Potential role of cd47-directed bispecific antibodies in cancer immunotherapy[J]. Front Immunol, 2021, 12: 686031. [41] BUATOIS V, JOHNSON Z, SALGADO-PIRES S, et al.Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the Treatment of B-Cell lymphoma and leukemia[J]. Mol Cancer Ther, 2018, 17(8): 1739-1751. [42] YU J, LI S, CHEN D, et al.IMM0306, a fusion protein of CD20 mAb with the CD47 binding domain of SIRPalpha, exerts excellent cancer killing efficacy by activating both macrophages and NK cells via blockade of CD47-SIRP [43] KE H, ZHANG F, WANG J, et al.HX009, a novel BsAb dual targeting PD1 x CD47, demonstrates potent anti-lymphoma activity in preclinical models[J]. Scientific Reports, 2023, 13(1): 5419. [44] CENDROWICZ E, JACOB L, GREENWALD S, et al.DSP107 combines inhibition of CD47/SIRP [45] ClinicalTrials.gov. Platform Study for the Treatment of Relapsed or Refractory Aggressive Non-Hodgkin's Lymphoma (PRISM Study)[EB/OL]. (2018-06-07)[2023-05-06]. https://classic.clinicaltrials.gov. [46] NAN Y, ZHANG X, WANG S, et al.Targeting CD47 enhanced the antitumor immunity of PD-L1 blockade in B-cell lymphoma[J]. Immunotherapy, 2023, 15(3): 175-187. [47] HAN Z, WU X, QIN H, et al.Blockade of the immune checkpoint CD47 by TTI-621 Potentiates the response to anti-PD-L1 in Cutaneous T cell lymphoma[J]. J Invest Dermatol, 2023, 143(8): 1569-1578. [48] XU L, WANG S, LI J, et al.CD47/SIRP [49] LI M, YU H, QI F, et al.Anti-CD47 immunotherapy in combination with BCL-2 inhibitor to enhance anti-tumor activity in B-cell lymphoma[J]. Hematol Oncol, 2022, 40(4): 596-608. [50] CAO X, WANG Y, ZHANG W, et al.Targeting macrophages for enhancing CD47 blockade-elicited lymphoma clearance and overcoming tumor-induced immunosuppression[J]. Blood, 2022, 139(22): 3290-3302. [51] DACEK MM, KURTZ K, WALLISCH P, et al.Potentiating antibody-dependent killing of cancers with CAR T cells secreting CD47-SIRP [52] CHEN H, YANG Y, DENG Y, et al.Delivery of CD47 blocker SIRP [53] CHIANG ZC, FANG S, SHEN YK, et al.Development of novel CD47-Specific ADCs possessing high potency against non-small cell lung cancer [54] SON J, HSIEH RC, LIN HY, et al.Inhibition of the CD47-SIRPalpha axis for cancer therapy: A systematic review and meta-analysis of emerging clinical data[J]. Front Immunol, 2022, 13: 1027235. [55] HAWKES E, LEWIS KL, DOO NW, et al.First-in-human (FIH) study of the fully-human kappa-lambda CD19/CD47 bispecific antibody TG-1801 in patients (pts) with B-Cell lymphoma[J]. Blood, 2022, 140: 6599-6601. [56] SHI YK, SONG YP, ZHANG MZ, et al.Preliminary safety and efficacy evaluation of IMM0306, a CD47 and CD20 bispecific monoclonal antibody-trap (mAbTrap), from an ongoing phase i dose-escalation study in patients with relapsed or refractory B-Cell non- hodgkin's lymphoma (R/R B-NHL)[J]. Blood, 2022, 140: 9323-9324. [57] WANG J, SUN Y, CHU Q, et al.Phase I study of IBI322 (anti-CD47/PD-L1 bispecific antibody) monotherapy therapy in patients with advanced solid tumors in China[J]. Cancer Research, 2022, 82(12Suppl): T513. |
[1] | LUO Fangmei, WU Pan, LI Jing, WANG Ting, WANG Fangjie. Correlations of ABCB1 C3435T genetic polymorphism with serum concentrations and adverse reactions of high-dose methotrexate in children with mature B-cell lymphoma [J]. Chinese Journal of Pharmacovigilance, 2023, 20(6): 675-679. |
[2] | XIN Yumeng, LU Tiangong, SUN Zhenxiao. Licorice and dried ginger decoction protects macrophages from cisplatin-induced cytotoxicity [J]. Chinese Journal of Pharmacovigilance, 2023, 20(6): 661-670. |
[3] | PENG Miaoxin, WANG Yanqiong, XU Peipei, YANG Yonggong. Analysis of epileptic seizures induced by lenalidomide with high-grade B cell lymphoma [J]. Chinese Journal of Pharmacovigilance, 2023, 20(5): 585-587. |
[4] | JIANG Kun, TANFeilong, WANG Zhongjuan, TAN Hongcheng, YOU Li’na. One case of central nervous system toxicity induced by loratinib tablets [J]. Chinese Journal of Pharmacovigilance, 2023, 20(12): 1432-1434. |
[5] | WEN Hairuo, HUANG Ying, QU Zhe, JIANG Hua, LAN Jie, LOU Xiaoyan, GENG Xingchao, WANG Sanlong, YU Lei. Pre-clinical toxicity evaluation of CAR-T cells for the treatment of non-Hodgkin's lymphoma [J]. Chinese Journal of Pharmacovigilance, 2022, 19(8): 828-835. |
[6] | CHEN Fangfang, ZHANG Hongxu. Pharmacy practice during the treatment of primary central nervous system lymphoma with high dose methotrexate [J]. Chinese Journal of Pharmacovigilance, 2022, 19(4): 446-449. |
[7] | TIAN Jixin, MIAO Wenjuan, LIAO Yingxi, ZHANG Ping, WANG Xiaodan, LI Shan, YAN Haihong. Pharmaceutical Care for a Patient with Bradycardia Induced by Lenalidomide [J]. Chinese Journal of Pharmacovigilance, 2020, 17(8): 487-490. |
[8] | ZHANG Qiongling, XIAO Suping, LIU Lei, ZHANG Quan, DING Shilan, YAN Huijie, WANG Jiyong, YOU Yun. Biological Evaluation for Quality Control of Water Soluble Extracts of Radix Glycyrrhizae Based on Macrophage Phagocytosis Model [J]. Chinese Journal of Pharmacovigilance, 2020, 17(10): 659-664. |
[9] | WEN Yu, XIE Fang-wei, OUYANG Xue-nong. Risk Assessment and Pharmaceutical Care on a Patient with Non-Hodgkin Lymphoma Chemotherapy [J]. Chinese Journal of Pharmacovigilance, 2012, 9(4): 247-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||