[1] DUAN XC, HUANG S, PENG DY, et al.Application of Network Pharmacology in the Study of Traditional Chinese Medicine Formula[J]. Chinese Pharmacological Bulletin(中国药理学通报), 2020, 36(3): 303-308. [2] LIU Z, GUO F, WANG Y, et al.BATMAN-TCM: A Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine[J]. Scientific Reports, 2016, 6: 21146. [3] WANG N.Herb Target Prediction and Application Research Based on Heterogeneous Network[D]. Beijing: Beijing Jiaotong University, 2022. [4] ZENG KW, TU TF.Recent Progress on the Methodology for Target Study of Traditional Chinese Medicine[J]. Scientia Sinica(Chimica)(中国科学:化学), 2018, 48(11): 1420-1428. [5] WANG W, LIU L, YANG Z, et al.Anti-Psoriasis Molecular Targets and Active Components Discovery of Optimized Yinxieling Formula via Affinity-Purified Strategy[J]. Chinese Journal of Natural Medicines, 2024, 22(2): 127-136. [6] FANG H, PENG B, ONG SY, et al.Recent Advances in Activity-Based Probes (Abps) and Affinity-Based Probes (Afbps) for Profiling of Enzymes[J]. Chem Sci, 2021, 12(24): 8288-8310. [7] CHANG J, KIM Y, KWON HJ.Advances in Identification and Validation of Protein Targets of Natural Products Without Chemical Modification[J]. Natural Product Reports, 2016, 33(5): 719-730. [8] MA J, LIU Q.Identification Techniques of Small Molecule Drug Target Proteins without Chemical Modification and its Applications: a Review[J]. Chinese Journal of Biotechnology(生物工程学报), 2021, 37(4): 1131-1138. [9] GUO XX, AN S, BAO F, et al.Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine[J]. Chinese Journal of Integrative Medicine, 2023, 29(7): 644-654. [10] CUI Z, LI C, CHEN P, et al.An Update of Label-Free Protein Target Identification Methods for Natural Active Products[J]. Theranostics, 2022, 12(4): 1829-1854. [11] NABET B, ROBERTS JM, BUCKLEY D L, et al.The dTAG System for Immediate and Target-Specific Protein Degradation[J]. Nature Chemical Biology, 2018, 14(5): 431-441. [12] KURATA M, YAMAMOTO K, MORIARITY BS, et al.CRISPR/Cas9 Library Screening for Drug Target Discovery[J]. Journal of Human Genetics, 2018, 63(2): 179-186. [13] SMITH AM, AMMAR R, NISLOW C, et al.A Survey of Yeast Genomic Assays for Drug and Target Discovery[J]. Pharmacol Ther, 2010, 127(2): 156-164. [14] FRANTZI M, LATOSINSKA A, MISCHAK H.Proteomics in Drug Development: The Dawn of a New Era[J]. Proteomics Clin Appl, 2019, 13(2): e1800087. [15] FUTAMURA Y, KAWATANI M, KAZAMI S, et al.Morphobase, an Encyclopedic Cell Morphology Database, and Its Use for Drug Target Identification[J]. Chem Biol, 2012, 19(12): 1620-1630. [16] FUTAMURA Y, YAMAMOTO K, OSADA H.Phenotypic Screening Meets Natural Products in Drug Discovery[J]. Biosci Biotechnol Biochem, 2017, 81(1): 28-31. [17] COLOMBO GM, CORSELLO SM.Modernizing the NCI60 Cell Line Screen for Phenotypic Drug Discovery in the 21st Century[J]. Cancer Res, 2024, 84(15): 2397-2399. [18] LUU T, GRISTWOOD K, KNIGHT JC, et al.Click Chemistry: Reaction Rates and their Suitability for Biomedical Applications[J]. Bioconjugate Chemistry, 2024, 35(6): 715-731. [19] ZHANG W, LEI W, SHEN F, et al.Cinnamaldehyde Induces Apoptosis and Enhances Anti-Colorectal Cancer Activity Via Covalent Binding to HSPD1[J]. Phytotherapy Research : PTR, 2023, 38(10): 4957-4966. [20] LIU CJ, LIU YP, YU SL, et al.Syntheses, Cytotoxic Activity Evaluation and HQSAR Study of 1,2,3-Triazole-Linked Isosteviol Derivatives as Potential Anticancer Agents[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26(22): 5455-5461. [21] ZHAO M, YAO L, ZHANG X, et al.Global Identification of the Cellular Targets for a Multi-Molecule System by a Photochemically-Induced Coupling Reaction[J]. Chemical Communications (Cambridge, England), 2021, 57(28): 3449-3452. [22] WANG W, ZHANG ZQ, ZHANG YC, et al.Cayratia Albifolia C.L.Li Exerts Anti-Rheumatoid Arthritis Effect by Inhibiting Macrophage Activation and Neutrophil Extracellular Traps (Nets)[J]. Chinese Medicine, 2024, 19(1): 42. [23] ZHAO MM, DUAN JY, SHEN Y, et al. Recent Advances in Neuroinflammation Prevention and Therapy: The Role of Natural Products and Underlying Mechanisms Based on Molecular Targets[J/OL]. British Journal of Pharmacology.2024-03-26)[2024-08-18]. Wileyonlinelibrary.com/journal/bph. [24] LIN X, LIU M, YI Q, et al.Design, Synthesis, and Evaluation of a Carboxylesterase Detection Probe with Therapeutic Effects[J]. Talanta, 2024, 274: 126060. [25] HA J, PARK H, PARK J, et al.Recent Advances in Identifying Protein Targets in Drug Discovery[J]. Cell Chemical Biology, 2021, 28(3): 394-423. [26] ZHENG L, MENG J, JIANG K, et al. Improving Protein-Ligand Docking and Screening Accuracies by Incorporating a Scoring Function Correction Term[J]. Brief Bioinform, 2022, 23(3): bbac051. [27] LI G, PENG X, GUO Y, et al.Currently Available Strategies for Target Identification of Bioactive Natural Products[J]. Front Chem, 2021, 9: 761609. [28] HERNÁEZ ML, GIL C. SILAC-Based Quantitative Phosphoproteomics in Yeast[J]. Methods Mol Biol, 2023, 2603: 103-115. [29] CHENG S, ZHAO F, WEN L, et al.iTRAQ-Based Proteomics Analysis of Human Cytomegalovirus Latency and Reactivation in T98G Cells[J]. J Virol, 2022, 96(2): e0147621. [30] COLLIER T S, SARKAR P, FRANCK WL, et al.Direct Comparison of Stable Isotope Labeling by Amino Acids in Cell Culture and Spectral Counting for Quantitative Proteomics[J]. Anal Chem, 2010, 82(20): 8696-8702. [31] DAYON L, HAINARD A, LICKER V, et al.Relative Quantification of Proteins in Human Cerebrospinal Fluids by MS/MS Using 6-Plex Isobaric Tags[J]. Anal Chem, 2008, 80(8): 2921-2931. [32] YAN GR, TAN Z, WANG Y, et al.Quantitative Proteomics Characterization on the Antitumor Effects of Isodeoxyelephantopin Against Nasopharyngeal Carcinoma[J]. Proteomics, 2013, 13(21): 3222-3232. [33] SUNDARAMURTHI H, MANAVALAN A, RAMACHANDRAN U, et al.Phenotyping of Tianma-Stimulated Differentiated Rat Neuronal B104 Cells by Quantitative Proteomics[J]. Neurosignals, 2012, 20(1): 48-60. [34] YANG, LI XY, CHEN P, et al.The Review of Modern Advances in Basic Research on Compound Formulas of Traditional Chinese Medicine[J]. Bulletin of National Natural Science Foundation of China(中国科学基金), 2024, 38(3): 387-395. [35] LIAO LX, SONG XM, WANG LC, et al.Highly Selective Inhibition of IMPDH2 Provides the Basis of Antineuroinflammation Therapy[J]. Proc Natl Acad Sci USA, 2017, 114(29): E5986-E5994. [36] ZHANG HN, YANG L, LING JY, et al.Systematic Identification of Arsenic-Binding Proteins Reveals that Hexokinase-2 is Inhibited by Arsenic[J]. Proc Natl Acad Sci USA, 2015, 112(49): 15084-15089. [37] YE S, LUO W, KHAN Z A, et al.Celastrol Attenuates Angiotensin II-Induced Cardiac Remodeling by Targeting STAT3[J]. Circ Res, 2020, 126(8): 1007-1023. [38] WANG LC, LIAO LX, LV HN, et al.Highly Selective Activation of Heat Shock Protein 70 by Allosteric Regulation Provides an Insight into Efficient Neuroinflammation Inhibition[J]. EBioMedicine, 2017, 23: 160-172. [39] WANG YH, YE XM, YAO L, et al.Target Identification and Mechanism Research on Inhibiting Thrombocytopenia of Icaritin[J]. Chinese Traditional and Herbal Drugs(中草药), 2021, 52(17): 5250-5257. [40] FIROUZI Z, LARI P, RASHEDINIA M, et al.Proteomics Screening of Molecular Targets of Curcumin in Mouse Brain[J]. Life Sci, 2014, 98(1): 12-17. [41] LEE SY, LIM TG, CHEN H, et al.Esculetin Suppresses Proliferation of Human Colon Cancer Cells by Directly Targeting B-Catenin[J]. Cancer Prevention Research (Philadelphia, Pa), 2013, 6(12): 1356-1364. [42] ZHANG L, XU AL, YANG S, et al.In Vitro Screening and Toxic Mechanism Exploring of Leading Components with Potential Hepatotoxicity of Herba Epimedii Extracts[J]. Toxicol In Vitro, 2020, 62: 104660. [43] ZHANG X, WANG S, SHU L, et al.Rapid Screening of Hepatotoxic Components in Uncariae Ramulus Cum Uncis Based on “Component-Target-Pathway” Network[J]. J Pharm Biomed Anal, 2022, 219:114968. [44] JIANG X, QIN Y, WANG X, et al.Enzyme Immobilized on Magnetic Fluorescent Bifunctional Nanoparticles for A-Glucosidase Inhibitors Virtual Screening from Agrimonia Pilosa Ledeb Extracts Accompanied with Molecular Modeling[J]. J Chromatogr A, 2023, 1711: 464433. [45] CHEN S, BI K, LIANG H, et al.PROTAC Derivatization of Natural Products for Target Identification and Drug Discovery: Design of Evodiamine-Based Protacs as Novel REXO4 Degraders[J]. J Adv Res, 2024, 63: 219-230. [46] HOU W, LIU B, XU H.Triptolide: Medicinal Chemistry, Chemical Biology and Clinical Progress[J]. Eur J Med Chem, 2019, 176: 378-392. [47] WANG YY, LI J, WU ZR, et al.Insights into the Molecular Mechanisms of Polygonum Multiflorum Thunb-Induced Liver Injury: A Computational Systems Toxicology Approach[J]. Acta Pharmacol Sin, 2017, 38(5): 719-732. [48] ZHAO J, CHEN X, WANG JM.Research Progress and Primary Analysis for the Design of Codrug[J]. The Chinese Journal of Clinical Pharmacology(中国临床药理学杂志), 2024, 40(8): 1226-1230. [49] KENDALL LV, BAILEY AL, SINGH B, et al.Toxic Effects of High-Dose Meloxicam and Carprofen on Female CD1 Mice[J]. J Am Assoc Lab Anim Sci, 2022, 61(1): 75-80. [50] SUN G, WANG C.Molecular Toxicology and Cancer Prevention[J]. Molecules, 2023, 28(23): 7730. [51] WANG Y, ZHANG H, ZHANG BL, et al.Methodology and Applications for Multimodal Identification of Active Constituents of Traditional Chinese Medicine[J]. China Journal of Chinese Materia Medica(中国中药杂志), 2020, 45(1): 1-6. [52] RIBONE SR, PAZ SA, ABRAMS CF, et al.Target Identification for Repurposed Drugs Active Against SARS-Cov-2 via High-Throughput Inverse Docking[J]. J Comput Aided Mol Des, 2022, 36(1): 25-37. [53] GIUGLIANO G, GAJO M, MARFORIO TD, et al.Identification of Potential Drug Targets of Calix4-Arene by Reverse Docking[J]. Chemistry, 2024, 30(42): e202400871. [54] JIN Y, YU J, YU G.Identification of Hnopp140 as A Binding Partner for Doxorubicin with A Phage Display Cloning Method[J]. Chem Biol, 2002, 9(2): 157-162. [55] DIESTEL R, IRSCHIK H, JANSEN R, et al.Chivosazoles A and F, Cytostatic Macrolides from Myxobacteria, Interfere with Actin[J]. Chembiochem, 2009, 10(18): 2900-2903. |