[1] 向菲,张晓刚. 近5年中药不良反应文献的统计分析[J]. 中国中药杂志, 2011,36(19):2755-2758.
[2] Taylar J, King R D, Altmann T, et al. Application of metabolomic to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics, 2002, 18(S2): S241-S248.
[3] Cui F, Zhu P, Ji J, et al. Gas chromatography-mass spectrometry metabolomic study of lipopolysaccharides toxicity on rat basophilic leukemia cells[J]. Chem Biol Interact, 2018, 281: 81-88.
[4] Qiu P, Sun J, Man S, et al. Curcumin Attenuates N-Nitrosodiethyl-amine-Induced Liver Injury in Mice by Utilizing the Method of Metabonomics[J]. J Agric Food Chem, 2017, 65(9): 2000-2007.
[5] Go evac D, Damjanovi A, Stanojkovi T P, et al. Identification of cytotoxic metabolites from Mahonia aquifolium using 1H NMR-based metabolomics approach[J]. J Pharm Biomed Anal, 2018, 150:9-14.
[6] Fu Q, Liu D, Wang Y, et al. Metabolomic profiling of Campylob-
acter jejuni with resistance gene ermB by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and tandem quadrupole mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1079: 62-68.
[7] Pramai P, Abdul Hamid N A, Mediani A, et al. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear-magnetic-resonance-based metabolomics study[J]. J Food Drug Anal, 2018, 26(1): 47-57.
[8] Ma N, Liu X, Kong X, et al. Feces and liver tissue metabonomics studies on the regulatory effect of aspirin eugenol eater in hyperlipidemic rats[J]. Lipids Health Dis, 2017, 16(1): 240.
[9] Liu Y R, Huang R Q, Liu L J, et al. Metabonomics study of urine from Sprague-Dawley rats exposed to Huang-yao-zi using 1H NMR spectroscopy[J]. J Pharm Biomed Anal, 2010, 52(1): 136-141.
[10] 邵凤,刘林生,阿基业. GC/TOF-MS代谢组学技术研究雷公藤甲素在大鼠体内的急性毒性[J]. 中国药科大学学报, 2014,45(6):703-709.
[11] Xia X H, Yuan Y Y, Liu M. The assessment of the chronic hepatotoxicity induced by Polygoni Multiflori Radix in rats: A pilot study by using untargeted metabolomics method[J]. J Ethnoph-armacol, 2017, 203: 182-190.
[12] Zhang C E, Niu M, Li Q, et al. Urine metabolomics study on the liver injury in rats induced by raw and processed Polygonum multiflorum integrated with pattern recognition and pathways analysis[J]. J Ethnopharmacol, 2016, 194: 299-306.
[13] Zhao D S, Jiang L L, Fan Y X, et al. Investigation of Dioscorea bulbifera Rhizome-Induced Hepatotoxicity in Rats by a Multisample Integrated Metabolomics Approach[J]. Chem Res Toxicol, 2017, 30(10): 1865-1873.
[14] Wei Z, Qian Q, Dong X, et al. Metabolomic approach to understand the acute and chronic hepatotoxicity of Veratrum nigrum extract in mice based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Toxicol Mech Methods, 2017, 27(9): 687-696.
[15] Huo T, Fang Y, Zhao L, et al. 1H NMR-based metabonomic study of sub-chronic hepatotoxicity induced by realgar[J]. J Ethnop-harmacol, 2016, 192: 1-9.
[16] Man S, Qiu P, Li J, et al. Global metabolic profiling for the study of Rhizoma Paridis saponins-induced hepatotoxicity in rats[J]. Environ Toxicol, 2017, 32(1): 99-108.
[17] Xiong A, Yang F, Fang L, et al. Metabolomic and genomic evidence for compromised bile acid homeostasis by senecionine, a hepatotoxic pyrrolizidine alkaloid[J]. Chem Res Toxicol, 2014, 27(5): 775-786.
[18] Xue L M, Zhang Q Y, Han P, et al. Hepatotoxic constituents and toxicological mechanism of Xanthium strumarium L. fruits[J]. J Ethnopharmacol, 2014, 152(2): 272-282.
[19] Lu F, Cao M, Wu B, et al. Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus[J]. J Ethnopharmacol, 2013, 149(1): 311-320.
[20] Shen H, Wu J, Di LQ, et al. Enhancement by Glycyrrhizae Radix of hepatic metabolism of hypaconitine, a major bioactive and toxic component of Aconiti Laterlis Radix, evaluated by HPLC-TQ-MS/MS analysis[J]. Biomed Chromatogr, 2013, 27(5): 556-562.
[21] Hu X, Shen J, Pu X, et al. Urinary Time- or Dose-Dependent Metabolic Biomarkers of Aristolochic Acid-Induced Nephrotoxicity in Rats[J]. Toxicol Sci, 2017, 156(1): 123-132.
[22] Dong G, Wang J, Guo P, et al. Toxicity assessment of Arisaematis Rhizoma in rats by a (1)H NMR-based metabolomics approach[J]. Mol Biosyst, 2015, 11(2): 407-417.
[23] Ma C, Bi K, Zhang M, et al. Metabonomic study of biochemical changes in the urine of Morning Glory Seed treated rat[J]. J Pharm Biomed Anal, 2010, 53(3): 559-566.
[24] Michl J, Bello O, Kite GC, et al. Medicinally Used Asarum Species: High-Resolution LC-MS Analysis of Aristolochic Acid Analogs and In vitro Toxicity Screening in HK-2 Cells[J]. Front Pharmacol, 2017, 8: 215.
[25] 刘霞,肖瑛,高红昌,等. 基于1H NMR代谢组学方法分析马兜铃酸I诱导的雌雄小鼠急性肾毒性[J]. 高等学校化学学报, 2010,31(5):927-932.
[26] Li A, Guo X, Xie J, et al. Validation of biomarkers in cardiotoxicity induced by Periplocin on neonatal rat cardiomyocytes using UPLC-Q-TOF/MS combined with a support vector machine[J]. J Pharm Biomed Anal, 2016, 123: 179-185.
[27] Cai Y, Gao Y, Tan G, et al. Myocardial lipidomics profiling delineate the toxicity of traditional Chinese medicine Aconiti Lateralis radix praeparata[J]. J Ethnopharmacol, 2013, 147(2): 349-356.
[28] Wei L, Xue R, Zhang P, et al. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine[J]. OMICS, 2015, 19(8): 490-498.
[29] Zhang S N, Li X Z, Lu F, et al. Cerebral potential biomarkers discovery and metabolic pathways analysis of α-synucleinopathies and the dual effects of Acanthopanax senticosus Harms on central nervous system through metabolomics analysis[J]. J Ethnopharmacol, 2015, 163: 264-272.
[30] 谢辉辉,谢彤,徐建亚,等. 基于代谢组学方法研究乌头碱和苯甲酰乌头原碱对BeWo细胞的毒性机制[J]. 分析化学, 2015,43(12):1808-1813.
[31] Ma B, Qi H, Li J, et al. Triptolide disrupts fatty acids and peroxisome proliferator-activated receptor (PPAR) levels in male mice testes followed by testicular injury: A GC-MS based metab-olomics study[J]. Toxicology, 2015, 336: 84-95.
[32] Zhou Y, Liao Q, Lin M, et al. Combination of 1H NMR- and GC-MS-based metabonomics to study on the toxicity of Coptidis Rhizome in rats[J]. PLoS One, 2014, 9(2): e88281.
[33] Um S, Park J, Chung M, et al. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats[J]. Analytica chimica acta, 2012, 722(2): 87-94.
[34] Yang Z, Hou J J, Qi P, et al. Colon-derived uremic biomarkers induced by the acute toxicity of Kansui radix: A metabolomics study of rat plasma and intestinal contents by UPLC-QTOF-MS(E)[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1026: 193-203.
[35] 梁琦,倪诚,颜贤忠,等. 广防己、粉防己的肝肾毒性及代谢组学比较研究[J]. 中国中药杂志, 2010,35(21):2882-2888.
[36] 沈淑洁,水素芳,肖炳坤,等. 基于液质联用技术的金铃子散亚急性毒性代谢组学[J]. 中国中药杂志, 2017,42(4):777-782.
[37] 韩亮,冯毅凡,江涛,等. 蛇床子超临界提取物肝肾毒性及代谢组学的初步研究[J]. 中药新药与临床药理, 2012,23(2):131-135.
[38] 祁乃喜,刘玉梅,何翠翠,等. 中药毒性的代谢组学研究(Ⅱ):吡咯里西啶类生物碱的肝肾毒性[J]. 南京中医药大学学报, 2012,28(5):448-451.
[39] Xu C, Rezeng C, Li J, et al. 1H NMR-Based Metabolomics Study of the Toxicological Effects in Rats Induced by "Renqing Mangjue" Pill, a Traditional Tibetan Medicine[J]. Front Pharmacol, 2017, 8:602.
[40] Fan Y, Liu S, Chen X, et al. Toxicological effects of Nux Vomica in rats urine and serum by means of clinical chemistry, histopathology and 1H NMR-based metabonomics approach[J]. J Ethnopharmacol, 2018, 210: 242-253.
[41] Qian Y, Peng Y, Shang E, et al. Metabolic profiling of the hepatotoxicity and nephrotoxicity of Ginkgolic acids in rats using ultra-performance liquid chromatography-high-definition mass spectrometry[J]. Chem Biol Interact, 2017, 273: 11-17.
[42] Miao Y J, Shi Y Y, Li F Q, et al. Metabolomics study on the toxicity of Annona squamosa by ultraperformance liquid-chromat-
ography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis[J]. J Ethnopharmacol, 2016, 184: 187-195.
[43] Zhang Z H, Zhao Y Y, Cheng X L, et al. Metabonomic study of biochemical changes in the rat urine induced by Pinellia ternata (Thunb.) Berit[J]. J Pharm Biomed Anal, 2013, 85(1): 186-193.
[44] Wang H, Bai J, Chen G, et al. A metabolic profiling analysis of the acute hepatotoxicity and nephrotoxicity of Zhusha Anshen Wan compared with cinnabar in rats using (1)H NMR spectroscopy[J]. J Ethnopharmacol, 2013, 146(2): 572-580.
[45] Tang B, Ding J, Wu F, et al. 1H NMR-based metabonomics study of the urinary biochemical changes in Kansui treated rat[J]. J Ethnopharmacol, 2012, 141(1): 134-142.
[46] Wang Z, Liu J Q, Xu J D, et al. UPLC/ESI-QTOF-MS-based metabolomics survey on the toxicity of triptolide and detoxication of licorice[J]. Chin J Nat Med, 2017, 15(6): 474-480.
[47] Xu W, Wang H, Chen G, et al. A metabolic profiling analysis of the acute toxicological effects of the realgar (As2S2) combined with other herbs in Niuhuang Jiedu Tablet using 1H NMR spectroscopy[J]. J Ethnopharmacol, 2014, 153(3): 771-781.
[48] Yan Y, Zhang A, Dong H, et al. Toxicity and Detoxification Effects of Herbal Caowu via Ultra Performance Liquid Chromato-
graphy/Mass Spectrometry Metabolomics Analyzed using Pattern Recognition Method[J]. Pharmacogn Mag, 2017, 13(52): 683-692.
[49] Dong G, Wei D, Wang J, et al. Study of the cardiotoxicity of Venenum Bufonis in rats using an 1H NMR-based metabolomics approach[J]. PLoS One, 2015, 10(3): e0119515.
[50] Dong H, Zhang A, Sun H, et al. Ingenuity pathways analysis of urine metabolomics phenotypes toxicity of Chuanwu in Wistar rats by UPLC-Q-TOF-HDMS coupled with pattern recognition methods[J]. Mol Biosyst, 2012, 8(4): 1206-1221.
[51] Sun B, Li L, Wu S, et al. Metabolomic analysis of biofluids from rats treated with Aconitum alkaloids using nuclear magnetic resonance and gas chromatography/time-of-flight mass spectrometry[J]. Anal Biochem, 2009, 395(2): 125-133.
[52] Sui Z, Li Q, Zhu L, et al. An integrative investigation of the toxicity of Aconiti kusnezoffii radix and the attenuation effect of its processed drug using a UHPLC-Q-TOF based rat serum and urine metabolomics strategy[J]. J Pharm Biomed Anal, 2017, 145: 240-247.
[53] Chen Y, Duan J A, Guo J, et al. Yuanhuapine-induced intestinal and hepatotoxicity were correlated with disturbance of amino acids, lipids, carbohydrate metabolism and gut microflora function: A rat urine metabonomic study[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1026: 183-192.
[54] Guo P, Wang J, Dong G, et al. NMR-based metabolomics approach to study the chronic toxicity of crude ricin from castor bean kernels on rats[J]. Mol Biosyst, 2014, 10(9): 2426-2440.
[55] Dong H, Yan G L, Han Y, et al. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang[J]. Chin J Nat Med, 2015, 13(9): 687-698.
[56] Su G, Chen G, An X, et al. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum[J]. Front Pharmacol, 2017, 8: 271.
[57] Liu Y M, Hui R R, He C C, et al. A metabonomic approach to a unique detoxification effect of co-use of Euphorbia kansui and Zizyphus jujuba[J]. Phytother Res, 2013, 27(11):1621-1628.
[58] Su T, Tan Y, Tsui M S, et al. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing[J]. Sci Rep, 2016, 6: 34692. |