[1] XIAO XH, ZHAO X, BAI ZF, et al.New outlook on safety of traditional Chinese medicine: concept and practice[J]. China Journal of Chinese Materia Medica(中国中药杂志), 2023, 48(10): 2557-2564. [2] BAI ZF, GAO Y, ZUO XB, et al.Progress in research on the pathogenesis of immune regulation and idiosyncraticdrug-induced liver injury[J]. Acta Pharmaceutica Sinica(药学学报), 2017, 52(7): 1019-1026. [3] GAI YJ, ZHAO X, BAI ZF, et al.Prevention and control of safety risks of traditional Chinese medicine based on indirect knowledge of toxicity[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2021, 18(11): 1004-1008. [4] BAI ZF, EWANG JB, XIAOXH. Cognition innovation of toxicity of Chinese medicine and safe and precise medication[J]. China Journal of Chinese Materia Medica(中国中药杂志), 2022, 47(10): 2557-2564. [5] HUSSAINI SH, FARRINGTON EA.Idiosyncratic drug-induced liver injury: an overview[J]. Expert Opin Drug Saf, 2007, 6(6): 673-684. [6] CHALASANI NP, MADDUR H, RUSSO MW, et al.ACG clinical guideline: diagnosis and management of idiosyncratic drug-induced liver injury[J]. Am J Gastroenterol, 2021, 116(5): 878-898. [7] DI ZEO-SÁNCHEZ DE, SEGOVIA-ZAFRA A, MATILLA-CABELLO G, et al. Modeling drug-induced liver injury: current status and future prospects[J]. Expert Opin Drug Metab Toxicol, 2022, 18(9): 555-573. [8] MOSEDALE M, WATKINS PB.Drug-induced liver injury: Advances in mechanistic understanding that will inform risk management[J]. Clin Pharmacol Ther, 2017, 101(4): 469-480. [9] LUCENA MI, GARCÍA-MARTÍN E, ANDRADE RJ, et al. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury[J]. Hepatology, 2010, 52(1): 303-312. [10] BALL AL, JOLLY CE, LENNON MG, et al. The generation of HepG2 transmitochondrial cybrids to reveal the role of mitochondrial genotype in idiosyncratic drug-induced liver injury[J/OL]. Elife,(2023-06-15)[2023-12-30]. https://elifesciences.org/articles/78187. [11] HAN D, DARA L, WIN S, et al.Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria[J]. Trends Pharmacol Sci, 2013, 34(4): 243-253. [12] LIM PL, LIU J, GO ML, et al.The mitochondrial superoxide/thioredoxin-2/Ask1 signaling pathway is critically involved in troglitazone-induced cell injury to human hepatocytes[J]. Toxicol Sci, 2008, 101(2): 341-349. [13] VILLANUEVA-PAZ M, MORÁN L, LÓPEZ-ALCÁNTARA N, et al. Oxidative stress in drug-induced liver injury(DILI): from mechanisms to biomarkers for use in clinical practice[J]. Antioxidants(Basel), 2021, 10(3): 390. [14] ALHAZZANI K, ALREWILY SQ, ALJERIAN K, et al.Hydroxychloroquine ameliorates dasatinib-induced liver injury via decrease in hepatic lymphocytes infiltration[J]. Hum Exp Toxicol, 2023, 42: 9603271231188492. [15] LEE YH, CHUNG MC, LIN Q, et al.Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2(+/-) mice: two-stage oxidative injury[J]. Toxicol Appl Pharmacol, 2008, 231(1): 43-51. [16] ONG MM, WANG AS, LEOW KY, et al.Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2(+/-) mice[J]. Free Radic Biol Med, 2006, 40(3): 420-429. [17] ULRICH RG, BACON JA, BRASS EP, et al.Metabolic, idiosyncratic toxicity of drugs: overview of the hepatic toxicity induced by the anxiolytic, panadiplon[J]. Chem Biol Interact, 2001,134(3): 251-270. [18] EZHILARASAN D, MANI U.Valproic acid induced liver injury: an insight into molecular toxicological mechanism[J]. Environ Toxicol Pharmacol, 2022, 95: 103967. [19] HOPE OA, HARRIS KM.Management of epilepsy during pregnancy and lactation[J]. Bmj, 2023, 382: e074630. [20] SHNAYDER NA, GRECHKINA VV, KHASANOVA AK, et al.Therapeutic and toxic effects of valproic acid metabolites[J]. Metabolites, 2023, 13(1): 134. [21] MESEGUER ES, ELIZALDE MU, BOROBIA AM, et al.Valproic acid-induced liver injury: a case-control study from a prospective pharmacovigilance program in a tertiary hospital[J]. J Clin Med, 2021, 10(6): 1153. [22] KNAPP AC, TODESCO L, BEIER K, et al.Toxicity of valproic acid in mice with decreased plasma and tissue carnitine stores[J]. J Pharmacol Exp Ther, 2008, 324(2): 568-575. [23] BAPTISSART M, BRADISH CM, JONES BS, et al.Zac1 and the imprinted gene network program juvenile NAFLD in response to maternal metabolic syndrome[J]. Hepatology, 2022, 76(4): 1090-1104. [24] CHEN F, LIU Q, XIONG Y, et al.Current strategies and potential prospects of nanomedicine-mediated therapy in inflammatory bowel disease[J]. Int J Nanomedicine, 2021, 16: 4225-4237. [25] HOLT A, STRANGE JE, NOUHRAVESH N, et al.Heart failure following anti-inflammatory medications in patients with type 2 diabetes mellitus[J]. J Am Coll Cardiol, 2023, 81(15): 1459-1470. [26] XU H, ZHANG B, CHEN Y, et al.Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment[J]. Ann Rheum Dis, 2023, 82(3): 416-427. [27] FANG F, NI Y, YU H, et al.Inflammatory endothelium-targeted and cathepsin responsive nanoparticles are effective against atherosclerosis[J]. Theranostics, 2022, 12(9): 4200-4220. [28] CHEN SN, TAN Y, XIAO XC, et al.Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis[J]. Acta Pharmacol Sin, 2021, 42(10): 1610-1619. [29] HUANG S, WANG Y, XIE S, et al.Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/d-galactosamine-induced acute liver failure through inhibiting GSK3β-Nrf2-mediated hepatocyte apoptosis and ferroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(6): 1649-1672. [30] ZHAO Z, NING J, BAO XQ, et al.Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021, 9(1): 226. [31] GAO Y, XU G, MA L, et al.Icariside I specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity[J]. Cell Commun Signal, 2021, 19(1): 13. [32] RAO T, LIU YT, ZENG XC, et al.The hepatotoxicity of Polygonum multiflorum: the emerging role of the immune-mediated liver injury[J]. Acta Pharmacol Sin, 2021, 42(1): 27-35. [33] LIU T, XU G, LI Y, et al.Discovery of bakuchiol as an AIM2 inflammasome activator and cause of hepatotoxicity[J]. J Ethnopharmacol, 2022, 298: 115593. [34] SHI W, LIU T, YANG H, et al.Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury[J]. J Ethnopharmacol, 2024, 319(Pt 1): 117063. [35] LUYENDYK JP, MADDOX JF, COSMA GN, et al.Ranitidine treatment during a modest inflammatory response precipitates idiosyncrasy-like liver injury in rats[J]. J Pharmacol Exp Ther, 2003, 307(1): 9-16. [36] TU C, GAO Y, SONG D, et al.Screening for susceptibility-related biomarkers of diclofenac-induced liver injury in rats using metabolomics[J]. Front Pharmacol, 2021, 12: 693928. [37] FONTANA RJ, BJORNSSON ES, REDDY R, et al.The Evolving Profile of Idiosyncratic Drug-Induced Liver Injury[J]. Clin Gastroenterol Hepatol, 2023, 21(8): 2088-2099. [38] SHAW PJ, HOPFENSPERGER MJ, GANEY PE, et al.Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha[J]. Toxicol Sci, 2007, 100(1): 259-266. [39] SHAW PJ, FULLERTON AM, SCOTT MA, et al.The role of the hemostatic system in murine liver injury induced by coexposure to lipopolysaccharide and trovafloxacin, a drug with idiosyncratic liability[J]. Toxicol Appl Pharmacol, 2009, 236(3): 293-300. [40] CHENG L, YOU Q, YIN H, et al.Effect of polyI:C cotreatment on halothane-induced liver injury in mice[J]. Hepatology, 2009, 49(1): 215-226. [41] SHAW PJ, GANEY PE, ROTH RA.Trovafloxacin enhances the inflammatory response to a Gram-negative or a Gram-positive bacterial stimulus, resulting in neutrophil-dependent liver injury in mice[J]. J Pharmacol Exp Ther, 2009, 330(1): 72-78. [42] ZHANG ML, ZHAO X, LI WX, et al.Yin/Yang associated differential responses to Psoralea corylifolia Linn. In rat models: an integrated metabolomics and transcriptomics study[J]. Chin Med, 2023, 18(1): 102. [43] LI CY, LI XF, TU C, et al.The idiosyncratic hepatotoxicity of Polygonum multiflorum based on endotoxin model[J]. Acta Pharmaceutica Sinica(药学学报), 2015, 50(1): 28-33. [44] HE L, YIN P, MENG Y, et al.Immunological synergistic mechanisms of trans-/cis-stilbene glycosides in Heshouwu-related idiosyncratic liver injury[J]. Sci Bull(Beijing), 2017, 62(11): 748-751. [45] ZHANG L, NIU M, WEI AW, et al.Clinical correlation between serum cytokines and the susceptibility to Polygonum multiflorum-induced liver injury and an experimental study[J]. Food Funct, 2022, 13(2): 825-833. [46] XIAO XH, GUO YM, WANG JB, et al.Scientific evaluation and risk prevention of herb induced liver injury: A case study of Polygonum Multiflorum[J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases(中西医结合肝病杂志), 2021, 31(3): 193-196. [47] METUSHI IG, HAYES MA, UETRECHT J.Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients[J]. Hepatology, 2015, 61(4): 1332-1342. [48] CHO T, KOK LY, UETRECHT J.Testing possible risk factors for idiosyncratic drug-induced liver injury using an amodiaquine mouse model and co-treatment with 1-methyl-d-tryptophan or acetaminophen[J]. ACS Omega, 2021, 6(7): 4656-4662. [49] MAK A, UETRECHT J.The role of CD8+T cells in amodiaquine-induced liver injury in PD1-/- mice cotreated with anti-CTLA-4[J]. Chem Res Toxicol, 2015, 28(8): 1567-1573. [50] MAK A, UETRECHT J.The Combination of anti-CTLA-4 and PD1-/- mice unmasks the potential of isoniazid and nevirapine to cause liver injury[J]. Chem Res Toxicol, 2015, 28(12): 2287-2291. [51] ROTH RA, GANEY PE.Animal models of idiosyncratic drug-induced liver injury--current status[J]. Crit Rev Toxicol, 2011, 41(9): 723-739. [52] DUGAN CM, MACDONALD AE, ROTH RA, et al.A mouse model of severe halothane hepatitis based on human risk factors[J]. J Pharmacol Exp Ther, 2010, 333(2): 364-372. [53] KURTH MJ, YOKOI T, GERSHWIN ME.Halothane-induced hepatitis: paradigm or paradox for drug-induced liver injury[J]. Hepatology, 2014, 60(5): 1473-1475. [54] YOKOI T, ODA S.Models of idiosyncratic drug-induced liver injury[J]. Annu Rev Pharmacol Toxicol, 2021, 61: 247-268. [55] TESCHKE R, DANAN G.Idiosyncratic drug induced liver injury, cytochrome P450, metabolic risk factors and lipophilicity: highlights and controversies[J]. Int J Mol Sci, 2021, 22(7): 3441. [56] ANDÚJAR-VERA F, ALÉS-PALMER ML, MUÑOZ-DE-RUEDA P, et al. Metabolomic analysis of pediatric patients with idiosyncratic drug-induced liver injury according to the updated RUCAM[J]. Int J Mol Sci, 2023, 24(17): 13562. [57] CRIBB AE, MCQUAID T, RENTON KW.Effect of lipopolysaccharide(LPS)-evoked host defense activation on hepatic microsomal formation and reduction of sulfamethoxazole hydroxylamine in the rat[J]. Biochem Pharmacol, 2001, 62(4): 457-459. [58] ANTOINE D J, MERCER AE, WILLIAMS DP, et al.Mechanism-based bioanalysis and biomarkers for hepatic chemical stress[J]. Xenobiotica, 2009, 39(8): 565-577. [59] WEI H, LI AP.Permeabilized cryopreserved human hepatocytes as an exogenous metabolic system in a novel metabolism-dependent cytotoxicity assay for the evaluation of metabolic activation and detoxification of drugs associated with drug-induced liver injuries: results with acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone[J]. Drug Metab Dispos, 2022, 50(2): 140-149. [60] DEN BRAVER MW, DEN BRAVER-SEWRADJ SP, VERMEULEN NP, et al. Characterization of cytochrome P450 isoforms involved in sequential two-step bioactivation of diclofenac to reactive p-benzoquinone imines[J]. Toxicol Lett, 2016, 253: 46-54. [61] STEPHENS C, LUCENA MI, ANDRADE RJ.Genetic risk factors in the development of idiosyncratic drug-induced liver injury[J]. Expert Opin Drug Metab Toxicol, 2021, 17(2): 153-169. [62] STEPHENS C, LÓPEZ-NEVOT MÁ, RUIZ-CABELLO F, et al. HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity[J]. PLoS One, 2013, 8(7): e68111. [63] LI C, RAO T, CHEN X, et al.HLA-B*35:01 Allele is a potential biomarker for predicting polygonum multiflorum-induced liver injury in humans[J]. Hepatology, 2019, 70(1): 346-357. [64] YANG WN, PANG LL, ZHOU JY, et al.Single-nucleotide polymorphisms of HLA and Polygonum multiflorum-induced liver injury in the Han Chinese population[J]. World J Gastroenterol, 2020, 26(12): 1329-1339. [65] NICOLETTI P, AITHAL GP, BJORNSSON ES, et al.Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in hla and other genes in a genome-wide association study[J]. Gastroenterology, 2017, 152(5): 1078-1089. [66] DALY AK, DONALDSON PT, BHATNAGAR P, et al.HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin[J]. Nat Genet, 2009, 41(7): 816-819. [67] BRUNO CD, FREMD B, CHURCH RJ, et al.HLA associations with infliximab-induced liver injury[J]. Pharmacogenomics J, 2020, 20(5): 681-686. [68] STOLZ A.Newly identified genetic variants associated with idiosyncratic drug-induced liver injury[J]. Curr Opin Gastroenterol, 2022, 38(3): 230-238. [69] CIRULLI ET, NICOLETTI P, ABRAMSON K, et al.A missense variant in ptpn22 is a risk factor for drug-induced liver injury[J]. Gastroenterology, 2019, 156(6): 1707-1716. |