[1] REN RQ, ZHOU L, NI DX.An overview on the history of global influenza pandemics[J]. Chin J Epidemiol(中华流行病学杂志), 2018, 39(8): 1021-1027. [2] HAN J.Discovery of novel anti-influenza virus lead compounds via structure-based drug design and phenotypic Screening[D]. Jinan: Shandong University, 2022. [3] YAO D, BAO L, LI F, et al.H1N1 influenza virus dose dependent induction of dysregulated innate immune responses and STAT1/3 activation are associated with pulmonary immunopathological damage[J]. Virulence, 2022, 13(1): 1558-1572. [4] WU X, BAO L, HU Z, et al.Ficolin a exacerbates severe H1N1 influenza virus infection-induced acute lung immunopathological injury via excessive complement activation[J]. Cell Mol Immunol, 2021, 18(9): 2278-2280. [5] CILLONIZ C, PANTIN-JACKWOOD MJ, NI C, et al.Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection[J]. J Virol, 2010, 84(15): 7613-7624. [6] LA GRUTA NL, KEDZIERSKA K, STAMBAS J, et al.A question of self-preservation: immunopathology in influenza virus infection[J]. Immunol Cell Biol, 2007, 85(2): 85-92. [7] ZHANG XQ.Mechanistic study of GATA3 against influenza A virus replication and its pan-carcinogenic letter analysis[D]. Beijing: Peking Union Medical College(北京协和医学院), 2021. [8] YU SF, YU FH.The main functions of the non-structural protein NS1 of influenza A virus[J]. Chinese Journal of Preventive Veterinary Medicine(中国预防兽医学报), 2022, 44(1): 96-100. [9] ROSÁRIO-FERREIRA N, PRETO AJ, MELO R, et al. The central role of non-structural protein 1(NS1) in influenza biology and infection[J]. Int J Mol Sci, 2020, 21(4): 1511. [10] REN CY, MA WW, ZHANG Y.Progress on NS1 protein of influenza A virus[J]. Progress in Veterinary Medicine(动物医学进展), 2021, 42(5): 85-89. [11] PICHLMAIR A, SCHULZ O, TAN CP, et al.RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates[J]. Science, 2006, 314(5801): 997-1001. [12] CHEN MP, CUI XL, GUO SS.Screening and analyses of the host proteins interacting with the nucleoprotein of the lnfluenza-A virus[J]. Chinaese Journal of Virology(病毒学报), 2022, 38(2): 385-393. [13] JEONG JS, JIANG L, ALBINO E, et al. Rapid identification of monospecific monoclonal antibodies using a human proteome microarray[J]. Mol Cell Proteomics, 2012, 11(6): O111.016253. [14] REN YR, CHAERKADY R, HU S, et al.Unbiased discovery of interactions at a control locus driving expression of the cancer-specific therapeutic and diagnostic target, mesothelin[J]. J Proteome Res, 2012, 11(11): 5301-5310. [15] SIPRASHVILI Z, WEBSTER DE, KRETZ M, et al.Identification of proteins binding coding and non-coding human RNAs using protein microarrays[J]. BMC Genom, 2012, 13: 633. [16] CHEN Y, YANG LN, CHENG L, et al.Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity[J]. Mol Cell Proteomics, 2013, 12(10): 2804-2819. [17] DENG RP, HE X, GUO SJ, et al.Global identification of O-GlcNAc transferase(OGT) interactors by a human proteome microarray and the construction of an OGT interactome[J]. Proteomics, 2014, 14(9): 1020-1030. [18] ZHANG HN, YANG L, LING JY, et al.Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic[J]. PNAS, 2015, 112(49): 15084-15089. [19] MARC D.Influenza virus non-structural protein NS1: interferon antagonism and beyond[J]. J Gen Virol, 2014, 95(Pt 12): 2594-2611. [20] ROBB NC, JACKSON D, VREEDE FT, et al.Splicing of influenza A virus NS1 mRNA is independent of the viral NS1 protein[J]. J Gen Virol, 2010, 91(Pt 9): 2331-2340. [21] SATTERLY N, TSAI PL, VAN DEURSEN J, et al.Influenza virus targets the mRNA export machinery and the nuclear pore complex[J]. PNAS, 2007, 104(6): 1853-1858. [22] FOURNIER G, CHIANG C, MUNIER S, et al.Recruitment of RED-SMU1 complex by influenza A virus RNA polymerase to control viral mRNA splicing[J]. Plos Pathog, 2014, 10(6): e1004164. [23] DENG RP, HE X, GUO SJ, et al.Global identification of O-GlcNAc transferase(OGT) interactors by a human proteome microarray and the construction of an OGT interactome[J]. Proteomics, 2014, 14(9): 1020-1030. [24] WANG C, JIANG C, LI B.Introduction and application of protein microarray[J]. Guangdong Chemical(广东化工), 2022, 49(18): 99-101. [25] OSTARECK DH, NAARMANN-DE VRIES IS, OSTARECK-LEDERER A. DDX6 and its orthologs as modulators of cellular and viral RNA expression[J]. Wires RNA, 2014, 5(5): 659-678. [26] SCHELLER N, MINA LB, GALÃO RP, et al. Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control Mrna fates[J]. PNAS, 2009, 106(32): 13517-13522. [27] PAGER CT, SCHÜTZ S, ABRAHAM TM, et al. Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules[J]. Virology, 2013, 435(2): 472-484. [28] WARD AM, BIDET K, YINGLIN A, et al.Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3’UTR structures[J]. RNA Biol, 2011, 8(6): 1173-1186. [29] NÚÑEZ RD, BUDT M, SAENGER S, et al. The RNA helicase DDX6 associates with RIG-I to augment Induction of antiviral signaling[J]. International Journal of Molecular Sciences, 2018, 19(7): 1877. [30] XU X, WANG J, ZHANG Y, et al.Inhibition of DDX6 enhances autophagy and alleviates endoplasmic reticulum stress in vero cells under PEDV infection[J]. Vet Microbiol, 2022, 266: 109350. [31] ANDERSON DE, CUI J, YE Q, et al.Orthogonal genome-wide screens of bat cells identify MTHFD1 as a target of broad antiviral therapy[J]. PNAS, 2021, 118(39): e2104759118. [32] HASANKHANI A, BAHRAMI A, SHEYBANI N, et al.Differential co-expression network analysis reveals key hub-high traffic genes as potential therapeutic targets for COVID-19 pandemic[J]. Front Immunol, 2021, 12: 789317. [33] DUAN X, LI S, HOLMES JA, et al.MicroRNA 130a regulates both hepatitis C virus and hepatitis B virus replication through a central metabolic pathway[J]. Journal of Virology, 2018, 92(7): e02009-e02017. |