[1] KARIZAK AZ, SALMASI Z, GHEIBIHAYAT SM, et al.Understanding the regulation of “Don't Eat-Me” signals by inflammatory signaling pathways in the tumor microenvironment for more effective therapy[J]. Journal of Cancer Research and Clinical Oncology, 149(1): 511-529. [2] JIANG Z, SUN H, YU J, et al.Targeting CD47 for cancer immunotherapy[J]. J Hematol Oncol, 2021, 14(1): 180. [3] YANG H, XUN Y, YOU H.The landscape overview of CD47-based immunotherapy for hematological malignancies[J]. Biomarker Research, 2023, 11(1): 15. [4] ELADL E, TREMBLAY-LEMAY R, RASTGOO N, et al.Role of CD47 in hematological malignancies[J]. Journal of Hematology & Oncology, 2020, 13(1): 96. [5] JUNG YS, PARK JI.Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond beta-catenin and the destruction complex[J]. Experimental and Molecular Medicine, 2020, 52(2): 183-191. [6] CASEY SC, TONG L, LI Y, et al.MYC regulates the antitumor immune response through CD47 and PD-L1[J]. Science, 2016, 352(6282): 227-231. [7] MARQUARDT V, THERUVATH J, PAUCK D, et al.Tacedinaline (CI-994), a class I HDAC inhibitor, targets intrinsic tumor growth and leptomeningeal dissemination in MYC-driven medulloblastoma while making them susceptible to anti-CD47-induced macrophage phagocytosis via NF-kB-TGM2 driven tumor inflammation[J]. J Immunother Cancer, 2023, 11(1): e5871. [8] XU L N, WANG S H, SU X L, et al.Targeting glycogen synthase kinase 3 beta regulates CD47 expression after myocardial infarction in rats via the NF-κB signaling pathway[J]. Front Pharmacol, 2021,12: 662726. [9] CHEN C, WANG R, CHEN X, et al.Targeting CD47 as a novel immunotherapy for breast cancer[J]. Front Oncol, 2022, 12: 924740. [10] HU H, CHENG R, WANG Y, et al.Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47[J]. The Journal of Clinical Investigation, 2023, 133(2): e153470. [11] LIAN S, XIE R, YE Y, et al.Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells[J]. Sci Rep, 2019, 9(1): 4532. [12] LÓPEZ-PEREIRA B, FERNÁNDEZ-VELASCO AA, FERNÁNDEZ-VEGA I, et al. Expression of CD47 antigen in Reed-Sternberg cells as a new potential biomarker for classical Hodgkin lymphoma[J]. Clin Transl Oncol, 2020, 22(5): 782-785. [13] GHOLIHA AR, HOLLANDER P, LOF L, et al.Checkpoint CD47 expression in classical Hodgkin lymphoma[J]. Br J Haematol, 2022, 197(5): 580-589. [14] BOUWSTRA R, HE Y, DE BOER J, et al.CD47 Expression defines efficacy of rituximab with CHOP in non-germinal center B-cell (Non-GCB) diffuse large B-cell lymphoma patients (dlbcl), but not in GCB DLBCL[J]. Cancer Immunology Research, 2019, 7(10): 1663-1671. [15] CHO J, YOON SE, KIM SJ, et al.CD47 overexpression is common in intestinal non-GCB type diffuse large B-cell lymphoma and associated with 18q21 gain[J]. Blood Adv, 2022, 6(24): 6120-6130. [16] KAZAMA R, MIYOSHI H, TAKEUCHI M, et al.Combination of CD47 and signal-regulatory protein-α constituting the“don't eat me signal”is a prognostic factor in diffuse large B-cell lymphoma[J]. Cancer Sci, 2020, 111(7): 2608-2619. [17] CHEN YP, KIM HJ, WU H, et al.SIRPα expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma[J]. Blood Cancer J, 2019, 9(10): 84. [18] FREILE JA, USTYANOVSKA AN, CORRALES MG, et al.CD24 Is a potential immunotherapeutic target for mantle cell lymphoma[J]. Biomedicines, 2022, 10(5): 1175. [19] MARQUES-PIUBELLI ML, PARRA ER, FENG L, et al.SIRPα+ macrophages are increased in patients with FL who progress or relapse after frontline lenalidomide and rituximab[J]. Blood Adv, 2022, 6(11): 3286-3293. [20] VALENTIN R, PELUSO MO, LEHMBERG TZ, et al.The fully human anti-CD47 antibody SRF231 has dual-mechanism antitumor activity against chronic lymphocytic leukemia (CLL) cells and increases the activity of both rituximab and venetoclax[J]. Blood, 2018, 132(Suppl 1): 4393. [21] YANAGIDA E, MIYOSHI H, TAKEUCHI M, et al.Clinicopathological analysis of immunohistochemical expression of CD47 and SIRPα in adult T-cell leukemia/lymphoma[J]. Hematol Oncol, 2020, 38(5): 680-688. [22] KAMIJO H, MIYAGAKI T, TAKAHASHI-SHISHIDO N, et al.Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47[J]. Leukemia, 2020, 34(3): 845-856. [23] PAN YY, YU YD, WANG XJ, et al.Tumor-associated macrophages in tumor immunity[J]. Frontiers in Immunology, 2020, 11: 11. [24] OH HH, PARK YL, PARK SY, et al.CD47 mediates the progression of colorectal cancer by inducing tumor cell apoptosis and angiogenesis[J]. Pathol Res Pract, 2022, 240: 154220. [25] AUTIO A, WANG H, VELÁZQUEZ F, et al. SIRPα- CD47 axis regulates dendritic cell-T cell interactions and TCR activation during T cell priming in spleen[J]. PLoS One, 2022, 17(4): e266566. [26] SHENG M, LIN Y, XU D, et al.CD47-Mediated Hedgehog/SMO/GLI1 signaling promotes mesenchymal stem cell immunomodulation in mouse liver inflammation[J]. Hepatology, 2021, 74(3): 1560-1577. [27] YU J, LI S, CHEN D, et al.SIRPα-Fc fusion protein IMM01 exhibits dual anti-tumor activities by targeting CD47/SIRPα signal pathway via blocking the“don't eat me”signal and activating the“eat me”signal[J]. J Hematol Oncol, 2022, 15(1): 167. [28] CHEN Y, KLINGEN TA, AAS H, et al.CD47 and CD68 expression in breast cancer is associated with tumor-infiltrating lymphocytes, blood vessel invasion, detection mode, and prognosis[J]. The Journal of Pathology: Clinical Research, 2023, 9(3): 151-164. [29] HU T, LIU H, LIANG Z, et al.Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis[J]. Theranostics, 2020, 10(9): 4056-4072. [30] RAO L, WU L, LIU Z, et al.Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis[J]. Nat Commun, 2020, 11(1): 4909. [31] LIU X, WU X, WANG Y, et al.CD47 promotes human glioblastoma invasion through activation of the PI3K/Akt pathway[J]. Oncol Res, 2019, 27(4): 415-422. [32] SIKIC BI, LAKHANI N, PATNAIK A, et al.First-in-human, first-in-class phase i trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. J Clin Oncol, 2019, 37(12): 946-953. [33] ADVANI R, FLINN I, POPPLEWELL L, et al.CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma[J]. N Engl J Med, 2018, 379(18): 1711-1721. [34] ADVANI RH, FLINN I, POPPLEWELL L, et al.Activity and tolerabilty of the first-in-class anti-CD47 antibody Hu5F9-G4 with rituximab tolerated in relapsed/refractory non-Hodgkin lymphoma: Initial phase 1b/2 results[J]. Journal of Clinical Oncology, 2018, 36(15suppl): 7504. [35] NI H, CAO L, WU Z, et al.Combined strategies for effective cancer immunotherapy with a novel anti-CD47 monoclonal antibody[J]. Cancer Immunol Immunother, 2022, 71(2): 353-363. [36] ANSELL SM, MARIS MB, Lesokhin A M, et al.Phase I study of the CD47 BLocker TTI-621 in patients with relapsed or refractory hematologic malignancies[J]. Clin Cancer Res, 2021, 27(8): 2190-2199. [37] QUERFELD C, THOMPSON JA, Taylor MH, et al.Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sézary syndrome: a multicentre, phase 1 study[J]. Lancet Haematol, 2021, 8(11): e808-e817. [38] PIETSCH E C, DONG J, CARDOSO R, et al.Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies[J]. Blood Cancer Journal, 2017, 7(2): e536. [39] PATEL K, ZONDER JA, SANO D, et al.CD47-Blocker TTI-622 shows single-agent activity in patients with advanced relapsed or refractory lymphoma: update from the ongoing first-in-human dose escalation study[J]. Blood, 2021, 138(Suppl 1): 3560. [40] YANG Y, YANG Z, YANG Y.Potential role of cd47-directed bispecific antibodies in cancer immunotherapy[J]. Front Immunol, 2021, 12: 686031. [41] BUATOIS V, JOHNSON Z, SALGADO-PIRES S, et al.Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the Treatment of B-Cell lymphoma and leukemia[J]. Mol Cancer Ther, 2018, 17(8): 1739-1751. [42] YU J, LI S, CHEN D, et al.IMM0306, a fusion protein of CD20 mAb with the CD47 binding domain of SIRPalpha, exerts excellent cancer killing efficacy by activating both macrophages and NK cells via blockade of CD47-SIRPα interaction and FcɣR engagement by simultaneously binding to CD47 and CD20 of B cells[J]. Leukemia, 2023, 37(3): 695-698. [43] KE H, ZHANG F, WANG J, et al.HX009, a novel BsAb dual targeting PD1 x CD47, demonstrates potent anti-lymphoma activity in preclinical models[J]. Scientific Reports, 2023, 13(1): 5419. [44] CENDROWICZ E, JACOB L, GREENWALD S, et al.DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity[J]. J Exp Clin Cancer Res, 2022,41(1): 97. [45] ClinicalTrials.gov. Platform Study for the Treatment of Relapsed or Refractory Aggressive Non-Hodgkin's Lymphoma (PRISM Study)[EB/OL]. (2018-06-07)[2023-05-06]. https://classic.clinicaltrials.gov. [46] NAN Y, ZHANG X, WANG S, et al.Targeting CD47 enhanced the antitumor immunity of PD-L1 blockade in B-cell lymphoma[J]. Immunotherapy, 2023, 15(3): 175-187. [47] HAN Z, WU X, QIN H, et al.Blockade of the immune checkpoint CD47 by TTI-621 Potentiates the response to anti-PD-L1 in Cutaneous T cell lymphoma[J]. J Invest Dermatol, 2023, 143(8): 1569-1578. [48] XU L, WANG S, LI J, et al.CD47/SIRPα blocking enhances CD19/CD3-bispecific T cell engager antibody-mediated lysis of B cell malignancies[J]. Biochem Biophys Res Commun, 2019, 509(3): 739-745. [49] LI M, YU H, QI F, et al.Anti-CD47 immunotherapy in combination with BCL-2 inhibitor to enhance anti-tumor activity in B-cell lymphoma[J]. Hematol Oncol, 2022, 40(4): 596-608. [50] CAO X, WANG Y, ZHANG W, et al.Targeting macrophages for enhancing CD47 blockade-elicited lymphoma clearance and overcoming tumor-induced immunosuppression[J]. Blood, 2022, 139(22): 3290-3302. [51] DACEK MM, KURTZ K, WALLISCH P, et al.Potentiating antibody-dependent killing of cancers with CAR T cells secreting CD47-SIRPα checkpoint blocker[J]. Blood, 2023, 12: 857927. [52] CHEN H, YANG Y, DENG Y, et al.Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy[J]. J Immunother Cancer, 2022, 10(2): e3737. [53] CHIANG ZC, FANG S, SHEN YK, et al.Development of novel CD47-Specific ADCs possessing high potency against non-small cell lung cancer in vitro and in vivo[J]. Front Oncol, 2022, 12: 857927. [54] SON J, HSIEH RC, LIN HY, et al.Inhibition of the CD47-SIRPalpha axis for cancer therapy: A systematic review and meta-analysis of emerging clinical data[J]. Front Immunol, 2022, 13: 1027235. [55] HAWKES E, LEWIS KL, DOO NW, et al.First-in-human (FIH) study of the fully-human kappa-lambda CD19/CD47 bispecific antibody TG-1801 in patients (pts) with B-Cell lymphoma[J]. Blood, 2022, 140: 6599-6601. [56] SHI YK, SONG YP, ZHANG MZ, et al.Preliminary safety and efficacy evaluation of IMM0306, a CD47 and CD20 bispecific monoclonal antibody-trap (mAbTrap), from an ongoing phase i dose-escalation study in patients with relapsed or refractory B-Cell non- hodgkin's lymphoma (R/R B-NHL)[J]. Blood, 2022, 140: 9323-9324. [57] WANG J, SUN Y, CHU Q, et al.Phase I study of IBI322 (anti-CD47/PD-L1 bispecific antibody) monotherapy therapy in patients with advanced solid tumors in China[J]. Cancer Research, 2022, 82(12Suppl): T513. |