[1] Butt AM, Papanikolaou M, Rivera A.Physiology of oligodendroglia[J]. Adv Exp Med Biol, 2019, 1175: 117-128. [2] Xin W, Chan JR.Myelin plasticity: sculpting circuits in learning and memory[J]. Nature Reviews Neuroscience, 2020, 21(12): 682-694. [3] Jankovic J.Parkinson's disease: clinical features and diagnosis[J]. J Neurol Neurosurg Psychiatry, 2008, 79(4): 368-76. [4] Chaudhuri KR, Healy DG, Schapira AHV.Non-motor symptoms of Parkinson's disease: diagnosis and management[J]. The Lancet Neurology, 2006, 5(3): 235-245. [5] Chen LF, Xue LJ, Zheng JL, et al.PPARβ/δ agonist alleviates NLRP3 inflammasome-mediated neuroinflammation in the MPTP mouse model of Parkinson’s disease[J]. Behavioural Brain Research, 2019, 356: 483-489. [6] Zhang Z, Chen WL.Research progress of oligodendrocytes in neuro- degenerative diseases[J]. Journal of Yunnan University (Natural Science Edition)(云南大学学报(自然科学版)), 2019, 41(2): 404-410. [7] Saab AS, Tzvetanova ID, Nave KA.The role of myelin and oligodendrocytes in axonal energy metabolism[J]. Curr Opin Neurobiol, 2013, 23(6): 1065-1072. [8] Monje M.Myelin plasticity and nervous system function[J]. Annu Rev Neurosci, 2018, 41: 61-76. [9] Fünfschilling U, Supplie LM, Mahad D, et al.Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J]. Nature, 2012, 485(7399): 517-521. [10] Lee Y, Morrison BM, Li Y, et al.Oligodendroglia metabolically support axons and contribute to neurodegeneration[J]. Nature, 2012, 487(7408): 443-448. [11] Morrison BM, Lee Y, Rothstein JD.Oligodendroglia: metabolic supporters of axons[J]. Trends in Cell Biology, 2013, 23(12): 644-651. [12] Tang XY, Lan MH, Zhang M, et al.Effect of nitric oxide to axonal degeneration in multiple sclerosis via downregulating monocarboxylate transporter 1 in oligodendrocytes[J]. Nitric Oxide, 2017, 67: 75-80. [13] Jeffries MA, Urbanek K, Torres L, et al.ERK1/2 activation in preexisting oligodendrocytes of adult mice drives new myelin synthesis and enhanced CNS function[J]. The Journal of Neuroscience, 2016, 36(35): 9186-9200. [14] Sampaio-Baptista C, Johansen-Berg H.White matter plasticity in the adult brain[J]. Neuron, 2017. 96(6): 1239-1251. [15] McKenzie IA, Ohayon D, Li HL, et al. Motor skill learning requires active central myelination[J]. Science, 2014, 346(6207): 318-322. [16] Lin X, Ohayon D, McKenzie IA, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning[J]. Nat Neurosci, 2016, 19(9): 1210-1217. [17] Berto S, Mendizabal I, Usui N, et al.Accelerated evolution of oligodendrocytes in the human brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(48): 24334-24342. [18] Hentrich T, Wassouf Z, Ehrhardt C, et al.Increased expression of myelin-associated genes in frontal cortex of SNCA overexpressing rats and Parkinson's disease patients[J]. Aging, 2020, 12(19): 18889-18906. [19] Yu S, Li X, Liu G, et al.Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody[J]. Neuroscience, 2007, 145(2): 539-555. [20] Emamzadeh FN.Alpha-synuclein structure, functions, and interactions[J]. Journal of Research in Medical Sciences, 2016, 21(1): 29-29. [21] Karpowicz RJ, Trojanowski JQ, Lee VMY.Transmission of α-synuclein seeds in neurodegenerative disease: recent develop-ments[J]. Laboratory Investigation, 2019, 99(7): 971-981. [22] Burré J, Sharma M, Südhof TC.Cell biology and pathophysiology of α-synuclein[J]. Cold Spring Harbor Perspectives in Medicine, 2018, 8(3) :a024091. [23] Kasongo DW, Leo GD, Vicario N, et al. Chronic α-synuclein accumulation in rat hippocampus induces Lewy bodies formation and specific cognitive impairments[J]. eNeuro, 2020, 7(3) : ENEURO. 0009-20. 2020. [24] Recasens A, Ulusoy A, Kahle PJ et al. In vivo models of alpha-synuclein transmission and propagation[J]. Cell Tissue Res, 2018, 373(1):183-193. [25] Rodriguez L, Marano MM, Tandon A.Import and export of misfolded α-synuclein[J]. Front Neurosci, 2018, 12: 344. [26] Chaturvedi RK, Beal MF.Mitochondrial approaches for neurop- rotection[J]. Ann N Y Acad Sci, 2008, 1147(1): 395-412. [27] Exner N, Lutz AK, Haass C, et al.Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences[J]. The EMBO Journal, 2012, 31(14): 3038-3062. [28] Han QW, Chen Y, Chen NH.et al.MPTP-induced PD-like pathological changes in mice liver[J]. Chinese Journal of Pharmacovigilance(中国药物警戒), 2021, 18(1): 1-10. [29] Choi W S, Palmiter RD, Xia ZG.Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model[J]. Journal of Cell Biology, 2011, 192(5): 873-882. [30] Di Maio R, Barrett PJ, Hoffman EK, et al.α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease[J]. Science Translational Medicine, 2016, 8(342): 78. [31] Gupta V, Garg RK, Khattri S.Levels of IL-8 and TNF-α decrease in Parkinson's disease[J]. Neurological research, 2016, 38(2): 98-102. [32] Lindqvist D, Kaufman E, Brundin L, et al.Non-motor symptoms in patients with Parkinson's disease correlations with inflammatory cytokines in serum[J]. PloS One, 2012, 7(10): e47387. [33] Hickman S, Lzzy S, Sen P, et al.Microglia in neurodegeneration[J]. Nature Neuroscience, 2018, 21(10): 1359-1369. [34] von Euler Chelpin M, Vorup-Jensen T. Targets and mechanisms in prevention of Parkinson's disease through immunomodulatory treatments[J]. Scandinavian Journal of Immunology, 2017, 85(5): 321-330. [35] Wang R, Ouyang M, Zhang P, et al.Relationship between inflammatory factors expressed by activation of substantia nigra striatum microglia and dopamine content in Parkinson's disease mice[J]. Chinese Journal of Gerontology(中国老年学杂志), 2014, 34(10): 2768-2770. [36] Bryois J, Skene NG, Hansen TF, et al.Genetic identification of cell types underlying brain complex traits yields insights into the etiology of parkinson's disease[J]. Nature Genetics, 2020, 52(5): 482-493. [37] Dean DC 3rd, Sojkova J, Hurley S, et al. Alterations of myelin content in Parkinson's disease: a cross-sectional neuroimaging study[J]. PloS One, 2016, 11(10): e0163774. [38] Annese V, Barcia C, Ros-Bernal F, et al.Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism[J]. Neuropathol Appl Neurobiol, 2013, 39(2): 132-143. [39] Takagi S, Hayakawa N, Kimoto H, et al.Damage to oligodendrocytes in the striatum after MPTP neurotoxicity in mice[J]. Journal of Neural Transmission, 2007, 114(12): 1553-1557. [40] Han F, Perrin RJ, Wang Q, et al.Neuroinflammation and myelin status in Alzheimer's disease, Parkinson's disease, and normal aging brains: a small sample study[J]. Parkinson's Disease, 2019, 2019: 7975407 [41] Rodriguez-Diehl R, Vilas D, Bargalló N, et al.Co-morbid demyelinating lesions and atypical clinical features in a patient with Parkinson's disease[J]. Parkinsonism & Related Disorders, 2019, 62: 242-245. [42] Pozorski V, Oh JM, Adluru N, et al.Longitudinal white matter microstructural change in parkinson's disease[J]. Human Brain Mapping, 2018, 39(10): 4150-4161. [43] Alieva AK, Zyrin VS, Rudenok MM, et al.Whole-transcriptome analysis of mouse models with MPTP-induced early stages of Parkinson's disease reveals stage-specific response of transcriptome and a possible role of myelin-linked genes in neurodegeneration[J]. Molecular Neurobiology, 2018, 55(9): 7229-7241. [44] Guan XJ, Huang PY, Zeng QL, et al.Quantitative susceptibility mapping as a biomarker for evaluating white matter alterations in Parkinson's disease[J]. Brain Imaging and Behavior, 2019, 13(1): 220-231. [45] Ubhi K, Rockenstein E, Mante M, et al.Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors[J]. The Journal of Neuroscience, 2010, 30(18): 6236-6246. [46] Yazawa I, Giasson BI, Sasaki R, et al.Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration[J]. Neuron, 2005, 45(6): 847-859. [47] Grigoletto J, Pukaβ K, Gamliel A, et al.Higher levels of myelin phospholipids in brains of neuronal α-Synuclein transgenic mice precede myelin loss[J]. Acta Neuropathologica Communications, 2017, 5(1): 37. [48] Halliday GM, Stevens CH.Glia: initiators and progressors of pathology in Parkinson's disease[J]. Movement Disorders, 2011, 26(1): 6-17. [49] Braak H, Tredici KD.Poor and protracted myelination as a contributory factor to neurodegenerative disorders[J]. Neurobiology of Aging, 2004, 25(1): 19-23. [50] Wakabayashi K, Hayashi S, Yoshimoto M, et al.NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains[J]. Acta Neuropathologica, 2000, 99(1): 14-20. [51] Ray A, Katoch P, Jain N, et al. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions[J]. Journal of Cell Science, 2018, 131(5): jcs207340. [52] Reyes JF, Sackmann C, Hoffmann A, et al.Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes[J]. Acta Neuropathologica, 2019, 138(1): 23-47. |